1 |
胡盛寿, 高润霖, 刘力生. 中国心血管病报告2018概要 [J]. 中国循环杂志, 2019, 34(3): 209-220.
|
2 |
Soehnlein O, Bazioti V, Westerterp M. A pad 4 plaque erosion [J]. Circ Res, 2018, 123(1): 6-8.
|
3 |
Bentzon JF, Otsuka F, Virmani R, et al. Mechanisms of plaque formation and rupture [J]. Circ Res, 2014, 114(12): 1852-1866.
|
4 |
Ridker PM, Thuren T, Zalewski A, et al. Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS) [J]. Am Heart J, 2011, 162(4): 597-605.
|
5 |
Libby P, Pasterkamp G, Crea F, et al. Reassessing the mechanisms of acute coronary syndromes the “vulnerable plaque” and superficial erosion [J]. Circ Res, 2019, 124(1): 150-160.
|
6 |
Pasterkamp G, den Ruijter HM, Libby P. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease [J]. Nat Rev Cardiol, 2017, 14(1): 21-29.
|
7 |
Fracassi F, Niccoli G, Vetrugno V, et al. Optical coherence tomography and C-reactive protein in risk stratification of acute coronary syndromes [J]. Int J Cardiol, 2019, 286: 7-12.
|
8 |
Li J, Wang H, Tian J, et al. Change in lipoprotein-associated phospholipase A2 and its association with cardiovascular outcomes in patients with acute coronary syndrome [J]. Medicine, 2018, 97(28): e11517.
|
9 |
Chen C, Khismatullin DB. Oxidized low-density lipoprotein contributesto atherogenesis via co-activation ofmacrophages and mast cells [J]. PloS One, 2015, 10(3): e0123088.
|
10 |
McCarty S, Frishman W. Interleukin 1β a proinflammatory target for preventing atherosclerotic heart disease [J]. Cardiol Rev, 2014, 22(4): 176-181.
|
11 |
Scirica BM, Morrow DA, Cannon CP, et al. Clinical application of C-reactive protein across the spectrum of acute coronary syndromes [J]. Clin Chem, 2007, 53(10): 1800-1807.
|
12 |
Avanzas P, Arroyo-Espliguero R, Cosin-Sales J, et al. Markers of inflammation and multiple complex stenoses (pancoronary plaque vulnerability) in patients with non-ST segment elevation acute coronary syndromes [J]. Heart, 2004, 90(8): 847-852.
|
13 |
Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association [J]. Circulation, 2003, 107(3): 499-511.
|
14 |
Crea F, Libby P. Acute coronary syndromes: the way forward from mechanisms to precision treatment [J]. Circulation, 2017, 136(12): 1155-1166.
|
15 |
Scalone G, Niccoli G, Refaat H, et al. Not all plaque ruptures are born equal an optical coherence tomography study [J]. Eur Heart J Cardiovasc Imaging, 2017, 18(11): 1271-1277.
|
16 |
Koskinas KC, Sukhova GK, Baker AB, et al. Thin-capped atheromata with reduced collagen content in pigs develop in coronary arterial regions exposed to persistently low endothelial shear stress [J]. Arterioscler Thromb Vasc Biol, 2013, 33(7): 1494-1504.
|
17 |
Dai J, Xing L, Jia H, et al. In vivo predictors of plaque erosion in patients with ST-segment elevation myocardial infarction: a clinical, angiographical, and intravascular optical coherence tomography study [J]. Eur Heart J, 2018, 39(22): 2077-2085.
|
18 |
Burke AP, Farb A, Malcom GT, et al. Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women [J]. Circulation, 1998, 97(21): 2110-2116.
|
19 |
Edfeldt K, Swedenborg J, Hansson GK, et al. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation [J]. Circulation, 2002, 105(10): 1158-1161.
|
20 |
Quillard T, Araújo HA, Franck G, et al. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment implications for superficial erosion [J]. Eur Heart J, 2015, 36(22): 1394-1404.
|
21 |
Pedicino D, Vinci R, Giglio AF, et al. Alterations of hyaluronan metabolism in acute coronary syndrome: implications for plaque erosion [J]. J Am Coll Cardiol, 2018, 72(13): 1490-1503.
|
22 |
Koeffler HP, Ranyard J, Pertcheck M. Myeloperoxidase: its structure and expression during myeloid differentiation [J]. Blood, 1985, 65(2): 484-491.
|
23 |
Ferrante G, Nakano M, Prati F, et al. High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes a clinicopathological study [J]. Circulation, 2010, 122(24): 2505-2513.
|
24 |
Sugiyama S, Kugiyama K, Aikawa M, et al. Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: Involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis [J]. Arterioscler Thromb Vasc Biol, 2004, 24(7): 1309-1314.
|
25 |
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria [J]. Science, 2004, 303(5663): 1532-1535.
|
26 |
Fuchsa TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis [J]. Proc Natl Acad Sci U S A, 2010, 107(36): 15880-15885.
|
27 |
Yasue H, Mizuno Y, Harada E. Coronary artery spasm - Clinical features, pathogenesis and treatment [J]. Proc Jpn Acad Ser B Phys Biol Sci, 2019, 95(2): 53-66.
|
28 |
Hung MJ, Hu P, Hung MY. Coronary artery spasm review and update [J]. Int J Med Sci, 2014, 11(11): 1161-1171.
|
29 |
Yasue H, Nakagawa H, Itoh T, et al. Coronary artery spasm clinical features, diagnosis, pathogenesis, and treatment [J]. J Cardiol, 2008, 51(1): 2-17.
|
30 |
Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle [J]. Nature, 1994, 372(6503): 231-236.
|
31 |
Kandabashi T, Shimokawa H, Miyata K, et al. Inhibition of myosin phosphatase by upregulated rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-1β [J]. Circulation, 2000, 101(11): 1319-1323.
|
32 |
Wu D, Chen Y, Sun Y, et al. Target of MCC950 in inhibition of NLRP3 inflammasome activation: a literature review [J]. Inflammation, 2020, 43(1): 17-23.
|
33 |
van der Heijden T, Kritikou E, Venema W, et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report [J]. Arterioscler Thromb Vasc Biol, 2017, 37(8): 1457-1461.
|
34 |
van Hout GPJ, Bosch L, GHJM Ellenbroek, et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction [J]. Eur Heart J, 2017, 38(11): 828-836.
|
35 |
Tardif JC, Kouz S, Waters DD, et al. Efficacy and safety of low-dose colchicine after myocardial infarction [J]. N Engl J Med, 2019, 381(26): 2497-2505.
|
36 |
Ridker PM. From CANTOS to CIRT to COLCOT to clinic: will all atherosclerosis patients soon be treated with combination lipid-lowering and inflammation-inhibiting agents? [J]. Circulation, 2020, 141(10): 787-789.
|
37 |
Nidorf SM, Thompson PL. Why colchicine should be considered for secondary prevention of atherosclerosis [J]. Clin Ther, 2019, 41(1): 41-48.
|
38 |
Ridker PM, MacFadyen JG, Thuren T, et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis exploratory results from a randomised, double- blind, placebo-controlled trial [J]. Lancet, 2017, 390(10105): 1883-1842.
|
39 |
Mohler ER3rd, Ballantyne CM, Davidson MH, et al. The effect of darapladib on plasma lipoprotein-associated phospholipase A2 activity and cardiovascular biomarkers in patients With stable coronary heart disease or coronary heart disease risk equivalent [J]. J Am Coll Cardiol, 2008, 51(17): 1632-1641.
|
40 |
STABILITY Investigators, White HD, Held C, et al. Darapladib for preventing ischemic events in stable coronary heart disease [J]. N Engl J Med, 2014, 370(18): 1702-1711.
|
41 |
O'Donoghue ML, Braunwald E, White HD, et al. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial [J]. JAMA, 2014, 312(10): 1006-1015.
|
42 |
Mullard A. GSK's darapladib failures dim hopes for anti-inflammatory heart drugs [J]. Nat Rev Drug Discov, 2014, 13(7): 481-482.
|
43 |
Micha R, Imamura F, Wyler von Ballmoos M, et al. Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease [J]. Am J Cardiol, 2011, 108(9): 1362-1370.
|
44 |
Westlake SL, Colebatch AN, Baird J, et al. The effect of methotrexate on cardiovascular disease in patients with rheumatoid arthritis: a systematic literature review [J]. Rheumatology (Oxford), 2010, 49(2): 295-307.
|
45 |
Ridker PM, Everett BM, Pradhan A, et al. Low-dose methotrexate for the prevention of atherosclerotic events [J]. New Engl J Med, 2019, 380(8): 752-762.
|
46 |
Zimmer S, Grebe A, Bakke SS, et al. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming [J]. Sci Transl Med, 2016, 8(333): 2-31.
|
47 |
Wang H, Zhang X, Yu B, et al. Cyclodextrin ameliorates the progression of atherosclerosis via increasing high-density lipoprotein cholesterol plasma levels and anti-inflammatory effects in rabbits [J]. J Cardiovasc Pharmacol, 2019, 73(5): 334-342.
|
48 |
Inazu A, Brown ML, Hesler CB, et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation [J]. N Engl J Med, 1990, 323(18): 1234-1238.
|
49 |
HPS3/TIMI55–REVEAL Collaborative Group, Bowman L, Hopewell JC, et al. Effects of anacetrapib in patients with atherosclerotic vascular disease [J]. N Engl J Med, 2017, 377(13): 1217-1227.
|
50 |
Armitage J, Holmes MV, Preiss D. Cholesteryl ester transfer protein inhibition for preventing cardiovascular events: JACC review topic of the week [J]. J Am Coll Cardiol, 2019, 73(4): 477-487.
|
51 |
Nagy N, Freudenberger T, Melchior-Becker A, et al. Inhibition of hyaluronan synthesis accelerates murine atherosclerosis: novel insights into the role of hyaluronan synthesis [J]. Circulation, 2010, 122(22): 2313-2322.
|
52 |
Li P, Li M, Lindberg MR, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps [J]. J Exp Med, 2010, 207(9): 1853-1862.
|
53 |
Franck G, Mawson LT, Folco EJ, et al. Roles of PAD4 and NETosis in experimental atherosclerosis and arterial injury implications for superficial erosion [J]. Circ Res, 2018, 123(1): 33-42.
|
54 |
Jia H, Dai J, Hou J, et al. Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion (the EROSION study) [J]. Eur Heart J, 2017, 38(11): 792-800.
|
55 |
Dai Z, Aoki T, Fukumoto Y, et al. Coronary perivascular fibrosis is associated with impairment of coronary blood flow in patients with non-ischemic heart failure [J]. J Cardiol, 2012, 60(5): 416-421.
|