切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (03) : 172 -181. doi: 10.11817/j.issn.1673-9248.2022.03.006

论著

富含miR-132-3p的神经干细胞释放的外泌体激活MEK1/2/-ERK1/2通路改善缺氧无糖诱导的脑微血管内皮细胞损伤
马晓瑭1, 王艳1, 李素青1, 刘金花1, 石雨萌1, 潘群文1,()   
  1. 1. 524001 广东湛江,广东医科大学附属医院神经病学研究所 广东省衰老相关心脑疾病重点实验室
  • 收稿日期:2021-09-08 出版日期:2022-06-01
  • 通信作者: 潘群文
  • 基金资助:
    国家自然科学基金面上项目(81770500,81870580); 广东省自然科学基金(2019A1515011574)

MiR-132-3p-enriched NSC-derived exosomes meliorate mouse brain microvessel endothelial cells injury via MEK1/2/ERK1/2 pathway

Xiaotang Ma1, Yan Wang1, Suqing Li1, Jinhua Liu1, Yumeng Shi1, Qunwen Pan1,()   

  1. 1. Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
  • Received:2021-09-08 Published:2022-06-01
  • Corresponding author: Qunwen Pan
引用本文:

马晓瑭, 王艳, 李素青, 刘金花, 石雨萌, 潘群文. 富含miR-132-3p的神经干细胞释放的外泌体激活MEK1/2/-ERK1/2通路改善缺氧无糖诱导的脑微血管内皮细胞损伤[J]. 中华脑血管病杂志(电子版), 2022, 16(03): 172-181.

Xiaotang Ma, Yan Wang, Suqing Li, Jinhua Liu, Yumeng Shi, Qunwen Pan. MiR-132-3p-enriched NSC-derived exosomes meliorate mouse brain microvessel endothelial cells injury via MEK1/2/ERK1/2 pathway[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2022, 16(03): 172-181.

目的

研究富含微小核糖核酸(miR)-132-3p的神经干细胞(NSC)释放的外泌体(EX)对缺氧且无糖(OGD)损伤的内皮细胞功能的保护作用。

方法

利用SPF级C57BL/6新生小鼠20只,原代培养NSC,采用装载miR-132-3p的慢病毒感染NSC获得NSCmiR-132-3p,同时采用装载Scramble序列的慢病毒感染NSC获得NSCNC。提取NSCNC和NSCmiR-132-3p释放的EX,分别获得NSC-EX和NSC-EXmiR-132-3p。将EX与OGD受损小鼠脑微血管内皮细胞(mBMEC)共培养,采用血管形成检测试剂盒、CCK8试剂盒、划痕实验、流式细胞技术、实时荧光定量逆转录聚合酶链反应和Western blotting分别检测mBMEC血管形成能力、增殖能力、迁移能力、凋亡、miR-132-3p表达和磷酸化细胞外调节激酶(pERK1/2)水平;丝裂原活化的细胞外信号调节激酶1/2(MEK1/2)通路抑制剂(PD0325901)处理检测MEK1/2-ERK1/2通路对NSC-EXmiR-132-3p功能的调控作用。采用Student’s t检验法比较上述各指标的组间差异。

结果

NSC-EX处理显著增加OGD诱导下mBMEC细胞的增殖能力(0.34±0.04 vs 0.23±0.04)、迁移能力[(238.45±18.72)μm vs(175.38±12.53)μm]、血管形成能力[(9±2)条 vs(3±1)条]及ERK1/2磷酸化水平(0.27±0.02 vs 0.07±0.01),减少细胞凋亡[(22.5±3.1)% vs(35.7±4.7)%],差异均具有统计学意义(t=2.98,P=0.042;t=4.92,P=0.008;t=4.65,P=0.011;t=16.09,P=0.001;t=6.05,P=0.004)。与NSC-EX处理相比,NSC-EXmiR-132-3p处理更有效增加mBMEC细胞的增殖能力(0.45±0.06 vs 0.34±0.04)、迁移能力[(346.51±19.28)μm vs(238.45±18.72)μm]、血管形成能力[(15±3)条 vs(9±2)条]、miR-132-3p表达(5.76±0.58 vs 2.85±0.39)和ERK1/2磷酸化水平(0.47±0.03 vs 0.27±0.02),减少细胞凋亡[(15.8±2.9)% vs(22.5±3.1)%],差异均具有统计学意义(t=2.97,P=0.041;t=6.27,P=0.003;t=3.05,P=0.038;t=7.16,P=0.002;t=9.69,P=0.001;t=3.06,P=0.04)。PD0325901处理降低NSC-EXmiR-132-3p对细胞增殖能力(0.28±0.03 vs 0.45±0.06)、迁移能力[(193.21±18.93)μm vs(346.51±19.28)μm]、血管形成能力[(6±2)条 vs(15±3)条]、凋亡[(29.4±3.4)% vs(15.8±2.9)%]和ERK1/2磷酸化水平(0.16±0.01 vs 0.47±0.03)的作用效果,差异均具有统计学意义(t=5.05,P=0.007;t=9.23,P=0.005;t=4.67,P=0.009;t=5.82,P=0.004;t=17.14,P=0.001)。

结论

miR-132-p通过激活MEK1/2-ERK1/2信号通路显著增强NSC-EX对OGD损伤的mBMEC功能的保护作用。

Objective

To investigate the effects of micro RNA (miR)-132-3p enriched neural stem cell-derived exosomes (NSC-EXs) on oxygen and glucose deprivation (OGD) injured mouse brain microvessel endothelial cells (mBMECs).

Methods

Primary neural stem cells (NSCs) were isolated and cultured. NSCNC was obtained by transfecting NSCs with lentivirus loaded with scramble sequence, and NSCmiR-132-3p was obtained from NSCs transfected with lentivirus loaded with miR-132-3p vector. NSC-EXs and NSC-EXsmiR-132-3p were extracted from NSCs and NSCmiR-132-3p culture medium, respectively; EXs were co-cultured with OGD treated mBMECs, and angiogenesis kit, CCK8 kit, scratch test, Annexin V-PE/7-AAD kit, quantitative Real-time polymerase chain reaction, and Western Blotting were used to detect the tube formation, proliferation, migration, apoptosis, miR-132-3p level, and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in OGD treated mBMECs. Mitogen extracellular signal regulated kinase (MEK1/2) inhibitor (PD0325901) was used to measure the effect of NSC-EXsmiR-132-3p on regulating MEK1/2-ERK1/2 signaling pathway. Comparisons between two groups were analyzed by t test.

Results

Compared to OGD group, NSC-EXs-treated group were significantly with increased proliferation (0.34±0.04 vs 0.23±0.04, t=2.98, P=0.042), migration [(238.45±18.72)μm vs (175.38±12.53)μm, t=4.92, P=0.008], tube formation(9±2 vs 3±1, t=4.65, P=0.011), and ERK1/2 phosphorylation (0.27±0.02 vs 0.07±0.01, t=16.09, P=0.001), while decreased apoptosis of mBMECs [(22.5±3.1)% vs (35.7±4.7)%, t=6.05, P=0.004]. Compared with NSC-EXs-treated group, NSC-EXmiR-132-3p-treated group was more effective on proliferation (0.45±0.06 vs 0.34±0.04, t=2.97, P=0.041), migration(346.51±19.28 vs 238.45±18.72, t=6.27, P=0.003), tube formation (15±3 vs 9±2, t=3.05, P=0.038), miR-132-3p expression (5.76±0.58 vs 2.85±0.39, t=7.16, P=0.002), and ERK1/2 phosphorylation(0.47±0.03 vs 0.27±0.02, t=9.69, P=0.001), while more decreased apoptosis of mBMECs [(15.8±2.9)% vs (22.5±3.1)%, t=3.06, P=0.04]. MEK1/2 inhibitor (PD0325901) treatment could partially abolish the effects of NSC-EXmiR-132-3p in increasing the proliferation (0.28±0.03 vs 0.45±0.06, t=5.05, P=0.007), migration (193.21±18.93 vs 346.51±19.28, t=9.23, P=0.005), tube formation(6±2 vs 15±3, t=4.67, P=0.009), and ERK1/2 phosphorylation (0.16±0.01 vs 0.47±0.03, t=17.14, P=0.001), while more decreased apoptosis of mBMECs (29.4±3.4) % vs (15.8±2.9) %, t=5.82, P=0.004).

Conclusion

MiR-132-3p could enhance the effects of NSC-EXs on protecting multiple mBMECs physiological functions from OGD-induced injury through activating MEK1/2-ERK1/2 signaling pathway.

图1 倒置显微镜白光下神经干细胞呈神经球样结构(图a),免疫荧光染色发现细胞核(DAPI,蓝色荧光,图b)、神经干细胞标记蛋白(Nestin,绿色荧光,图c)和新生细胞标记蛋白(Brdu,红色荧光,图d),图e所示为三组荧光重合(DAPI,蓝色荧光;Nestin,绿色荧光;Brdu,红色;重合,青色)。
图2 纳米颗粒分析仪检测神经干细胞分泌的外泌体(NSC-EX)粒径和浓度。图a为NSC-EX数据,图b为富含miR-132-3p的NSC-EX
图3 电子透射显微镜检测神经干细胞分泌的外泌体(NSC-EX)形态和粒径。图a为NSC-EX,图b为富含miR-132-3p的NSC-EX
图4 Western blot检测外泌体标志性蛋白CD63和TSG101表达注:NSC为神经干细胞,EX为外泌体
图5 神经干细胞分泌的外泌体(NSC-EX)与小鼠脑微血管内皮细胞融合。图a为DPAI标记细胞核;图b为PKH26标记NSC-EX;图c为NSC-EX与细胞融合
图6 装载miR-132-3p的慢病毒(LV)感染获得miR-132-3p高表达神经干细胞(NSC)。图a为LV-Scramble control转染NSC获得NSCNC;图b为LV-miR-132-3p转染获得NSCmiR-132-3p
表1 各组细胞及NSC-EX中miR-132-3p表达比较(
xˉ
±s
表2 各组mBMEC存活能力、迁移距离及血管形成数比较(
xˉ
±s
图7 神经干细胞来源外泌体(NSC-EX)和NSC-EXmiR-132-3p对缺氧且无糖(OGD)条件下小鼠脑微血管内皮细胞(mBMEC)血管形成能力的影响。图a为对照组mBMEC血管形成数;图b为OGD处理后mBMEC血管形成数;图c为NSC-EX处理下mBMEC血管形成数;图d为NSC-EXmiR-132-3p处理下mBMEC血管形成数;图e为NSC-EXmiR-132-3p+PD0325901处理下mBMEC血管形成数
表3 各组mBMEC凋亡的比较(
xˉ
±s
图8 神经干细胞来源外泌体(NSC-EX)和NSC-EXmiR-132-3p对缺氧且无糖(OGD)条件下小鼠脑微血管内皮细胞(mBMEC)凋亡的影响。图a为对照组mBMEC凋亡水平;图b为OGD处理后mBMEC凋亡水平;图c为NSC-EX处理下mBMEC凋亡水平;图d为NSC-EXmiR-132-3p处理下mBMEC凋亡水平;图e为NSC-EXmiR-132-3p+PD0325901处理下mBMEC凋亡水平注:PE和7-AAD为Annexin V-PE/7-AAD凋亡检测试剂盒的2种染料
表4 各组细胞中ERK1/2磷酸水平的比较(
xˉ
±s
图9 ERK1/2磷酸化水平检测。a为正常处理组;b为缺氧且无糖处理组;c为神经干细胞来源外泌体处理组;d为富含miR-132-3p的神经干细胞外泌体(NSC-EXmiR-132-3p)处理组;e为NSC-EXmiR-132-3p+MEK1/2通路阻断剂(PD0325901)处理组注:ERK为细胞外调节激酶,p-ERK为磷酸化细胞外调节激酶
1
Gong S, Cao G, Li F, et al. Endothelial conditional knockdown of NMMHC IIA (Nonmuscle Myosin Heavy Chain IIA) attenuates blood-brain barrier damage during ischemia-reperfusion injury [J]. Stroke, 2021, 52(3): 1053-1064.
2
Veres G, Hegedűs P, Barnucz E, et al. Endothelial dysfunction of bypass graft: direct comparison of in vitro and in vivo models of ischemia-reperfusion injury [J]. PLoS One, 2015, 10(4): e0124025.
3
Bernstock JD, Peruzzotti-Jametti L, Ye D, et al. Neural stem cell transplantation in ischemic stroke: a role for preconditioning and cellular engineering [J]. J Cereb Blood Flow Metab, 2017, 37(7): 2314-2319.
4
Blurton-Jones M, Kitazawa M, Martinez-Coria H, et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease [J]. Proc Natl Acad Sci U S A, 2009, 106(32): 13594-13599.
5
Zhang G, Zhu Z, Wang H, et al. Exosomes derived from human neural stem cells stimulated by interferon gamma improve therapeutic ability in ischemic stroke model [J]. J Adv Res, 2020, 24: 435-445.
6
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes [J]. Science, 2020, 367(6478): eaau6977.
7
Zhang C, Wang J, Ma X, et al. ACE2-EPC-EXs protect ageing ECs against hypoxia/reoxygenation-induced injury through the miR-18a/Nox2/ROS pathway [J]. J Cell Mol Med, 2018, 22(3): 1873-1882.
8
Lei Z, van Mil A, Brandt MM, et al. MicroRNA-132/212 family enhances arteriogenesis after hindlimb ischaemia through modulation of the Ras-MAPK pathway [J]. J Cell Mol Med, 2015, 19(8): 1994-2005.
9
Qu M, Pan J, Wang L, et al. MicroRNA-126 regulates angiogenesis and neurogenesis in a mouse model of focal cerebral ischemia [J]. Mol Ther Nucleic Acids, 2019, 16: 15-25.
10
Xu B, Zhang Y, Du XF, et al. Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity [J]. Cell Res, 2017, 27(7): 882-897.
11
Li X, Gao Y, Tian F, et al. miR-31 promotes neural stem cell proliferation and restores motor function after spinal cord injury [J]. Exp Biol Med (Maywood), 2021, 246(11): 1274-1286.
12
Song L, Tang S, Han X, et al. KIBRA controls exosome secretion via inhibiting the proteasomal degradation of Rab27a [J]. Nat Commun, 2019, 10(1): 1639.
13
Pan Q, Kuang X, Cai S, et al. miR-132-3p priming enhances the effects of mesenchymal stromal cell-derived exosomes on ameliorating brain ischemic injury [J]. Stem Cell Res Ther, 2020, 11(1): 260.
14
Wang J, Chen S, Zhang W, et al. Exosomes from miRNA-126-modified endothelial progenitor cells alleviate brain injury and promote functional recovery after stroke [J]. CNS Neurosci Ther, 2020, 26(12): 1255-1265.
15
Lin Q, Wang W, Yang L, et al. 4-Methoxybenzylalcohol protects brain microvascular endothelial cells against oxygen-glucose deprivation/reperfusion-induced injury via activation of the PI3K/AKT signaling pathway [J]. Exp Ther Med, 2021, 21(3): 252.
16
Pan Q, Zheng J, Du D, et al. MicroRNA-126 priming enhances functions of endothelial progenitor cells under physiological and hypoxic conditions and their therapeutic efficacy in cerebral ischemic damage [J]. Stem Cells Int, 2018, 2018: 2912347.
17
Pan Q, Liu H, Zheng C, et al. Microvesicles Derived from inflammation-challenged endothelial cells modulate vascular smooth muscle cell functions [J]. Front Physiol, 2017, 7: 692.
18
Dal Magro R, Vitali A, Fagioli S, et al. Oxidative stress boosts the uptake of cerium oxide nanoparticles by changing brain endothelium microvilli pattern [J]. Antioxidants (Basel), 2021, 10(2): 266.
19
李和平, 吴丽娥. 丁苯酞对急性缺血性脑卒中的作用及保护机制 [J]. 中华脑血管病杂志(电子版), 2013, 7(6): 342-345.
20
刘品一, 黄丽丽, 徐运. 脑小血管病和脑微循环研究进展 [J]. 中国卒中杂志, 2017, 12(2):132-142.
21
Zhang S, Chen A, Chen X. A feedback loop involving microRNA-150 and MYB regulates VEGF expression in brain microvascular endothelial cells after oxygen glucose deprivation [J]. Front Physiol, 2021, 12: 619904.
22
Pan Q, He C, Liu H, et al. Microvascular endothelial cells-derived microvesicles imply in ischemic stroke by modulating astrocyte and blood brain barrier function and cerebral blood flow [J]. Mol Brain, 2016, 9(1): 63.
23
Chou CH, Modo M. Characterization of gene expression changes in human neural stem cells and endothelial cells modeling a neurovascular microenvironment [J]. Brain Res Bull, 2020, 158: 9-19.
24
Joshi BS, Zuhorn IS. Heparan sulfate proteoglycan-mediated dynamin-dependent transport of neural stem cell exosomes in an in vitro blood-brain barrier model [J]. Eur J Neurosci, 2021, 53(3): 706-719.
25
Katare R, Riu F, Mitchell K, et al. Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132 [J]. Circ Res, 2011, 109(8): 894-906.
26
孙飞, 黄用豪. 七氟醚对结直肠癌细胞侵袭迁移的影响及对microRNA-203的调控作用机制研究 [J]. 中国现代医学杂志, 2021, 31(11): 1-6.
27
Zhang Y, Li Y, Wang Q, et al. Attenuation of hepatic ischemiareperfusion injury by adipose stem cellderived exosome treatment via ERK1/2 and GSK3β signaling pathways [J]. Int J Mol Med, 2022, 49(2): 13.
[1] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[2] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[3] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[4] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[5] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[6] 黄瑞娟, 德奇, 巴特, 周彪. 对人脐带间充质干细胞外泌体影响热损伤人皮肤成纤维细胞迁移的分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 229-234.
[7] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[8] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[9] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[10] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[11] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[12] 付强, 秦丽媛, 李全波. 神经病理性疼痛患者血清miR-15a水平及意义分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 293-298.
[13] 马强, 李军, 苟丽娟. 重症急性胰腺炎miR-21-3p、RUNX3表达水平及对病情发展程度的预测[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 337-341.
[14] 殷秀梅, 杨丽红, 姜涛, 杜元灏. 基于神经干细胞探讨巢蛋白在缺血性脑卒中中的作用机制及针刺效应[J]. 中华针灸电子杂志, 2023, 12(03): 111-116.
[15] 高雷, 李全, 巴雅力嘎, 陈强, 侯智慧, 曹胜军, 巴特. 重度烧伤患者血小板外泌体对凝血功能调节作用的初步研究[J]. 中华卫生应急电子杂志, 2023, 09(03): 149-154.
阅读次数
全文


摘要