切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2025, Vol. 19 ›› Issue (05) : 364 -374. doi: 10.3877/cma.j.issn.1673-9248.2025.05.002

论著

脑卒中偏瘫患者连续步行中骨盆不对称活动的动态分析
吴章薇1,2, 张通1,2,(), 赵军1,2, 周昊2, 李冰洁2   
  1. 1 100068 北京,首都医科大学康复医学院
    2 100068 北京,中国康复研究中心北京博爱医院神经内科
  • 收稿日期:2025-06-24
  • 通信作者: 张通
  • 基金资助:
    国家重点研发计划项目(2023YFC3605200,2023YFC3605204)

Dynamic analysis of pelvic asymmetric activity during continuous walking in stroke patients with hemiplegia

Zhangwei Wu1,2, Tong Zhang1,2,(), Jun Zhao1,2, Hao Zhou2, Bingjie Li2   

  1. 1 School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China
    2 Department of Neurology, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing 100068, China
  • Received:2025-06-24
  • Corresponding author: Tong Zhang
引用本文:

吴章薇, 张通, 赵军, 周昊, 李冰洁. 脑卒中偏瘫患者连续步行中骨盆不对称活动的动态分析[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(05): 364-374.

Zhangwei Wu, Tong Zhang, Jun Zhao, Hao Zhou, Bingjie Li. Dynamic analysis of pelvic asymmetric activity during continuous walking in stroke patients with hemiplegia[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2025, 19(05): 364-374.

目的

分析脑卒中患者骨盆偏瘫侧和非偏瘫侧之间的不对称性,并分析连续步行中骨盆偏瘫侧和非偏瘫侧不对称的渐进变化趋势。

方法

收集2020年10月至2022年9月中国康复研究中心北京博爱医院神经内科收治的脑卒中患者25例。入组患者接受三维步态分析,步态任务为连续步行最长距离。整个步行数据分为步行初期、步行中期、步行末期。弃去前3个步行周期,步行初期骨盆角度1(A1)为第4~6个步行周期的均值,步行末期A3为步行停止前3个步行周期的均值,步行中期A2为A1和A3中间的连续3个骨盆角度的均值;根据步行距离分为室内步行组(步行距离50~200 m)和室外步行组(步行距离>200 m)。分析骨盆三轴(X轴前倾/后倾,Y轴向上侧倾/向下侧倾,Z轴旋内/旋外)偏瘫侧和非偏瘫侧关节角度的差异;分析连续步行中骨盆三轴关节角度的渐进变化趋势;分析不同步行能力患者骨盆三轴关节角度渐进性变化趋势的差异。

结果

在整个步行周期中,骨盆偏瘫侧和非偏瘫侧的最大前倾(PTAmaxt=2.614,P=0.011)、最大向上侧倾(POAmaxZ=2.115,P=0.034)、步行初期骨盆前后倾斜活动范围(PTAROM1t=2.829,P=0.009)、步行末期与步行初期骨盆前后倾斜活动范围差值(PTAROM3-1t=3.263,P=0.003),组间差异均有统计学意义。在连续步行中,偏瘫侧PTAmaxF=3.295,P=0.046)和前后倾斜活动范围(PTAROMF=4.374,P=0.018)均渐进增大,差异均有统计学意义;进一步分析发现,有统计学意义的渐进增大PTAmax体现在室内步行组(F=5.830,P=0.009)、PTAROM体现在室外步行组(F=3.500,P=0.046)。偏瘫侧骨盆最大旋内(PRAmaxF=3.306,P=0.046)及旋转活动范围(PRAROMF=4.896,P=0.012)、非偏瘫侧PRAROMF=4.454,P=0.017)均渐进减小,差异均有统计学意义;进一步分析发现,有统计学意义的渐进减少见于偏瘫侧PRAmaxF=3.484,P=0.048)室内步行组。

结论

脑卒中患者步行周期中骨盆偏瘫侧和非偏瘫侧前倾和侧倾存在不对称改变。在连续步行中,骨盆偏瘫侧前倾、前后倾斜范围、旋内均呈渐进变化,而非偏瘫侧骨盆未见对称性改变,且步行能力差的患者骨盆不对称改变更显著。

Objective

To analyze the asymmetry between the hemiplegic and non-hemiplegic sides of the pelvis in stroke patients and analyze the progressive changes in pelvic asymmetry during continuous walking.

Methods

A total of 25 stroke patients admitted to the Neurology Department of Beijing Bo'ai Hospital of China Rehabilitation Research Center, from October 2020 to September 2022 were enrolled. The enrolled patients underwent three-dimensional gait analysis, with the gait task being the maximum continuous walking distance. The entire gait cycle was divided into three phases: initial, middle, and terminal. The first three gait cycles were excluded. The pelvic angle (angle 1, A1) in the initial phase was the mean of the 4th to 6th gait cycles, while the terminal phase angle (A3) was the mean of the last three gait cycles before stopping. The middle phase angle (A2) was the mean of three consecutive pelvic angles between A1 and A3. Based on walking distance, patients were divided into an indoor walking group (50-200 m) and an outdoor walking group (>200 m). Differences in pelvic joint angles (X-axis: anterior/posterior tilt; Y-axis: up/down obliquity; Z-axis: internal/external rotation) between the hemiplegic and non-hemiplegic sides were analyzed. The progressive trends of pelvic joint angles during continuous walking were assessed, and differences in these trends between patients with varying walking abilities were examined.

Results

Significant differences were observed between the hemiplegic and non-hemiplegic sides in: maximum pelvis anterior tilt angles (PTAmax; t=2.614, P=0.011), maximum up obliquity angles (POAmax; Z=2.115, P=0.034), the range of motion (ROM) of pelvic tilt (PTAROM1) in the initial phase (t=2.829, P=0.009), the ROM of pelvic tilt between terminal and initial phases (PTAROM3-1; t=3.263, P=0.003). During continuous walking, the hemiplegic side showed statistically significant progressive increases in both PTAmax (F=3.295, P=0.046) and PTAROM (F=4.374, P=0.018). Further analysis revealed statistically significant progressive increases in PTAmax specifically in the indoor walking group (F=5.830, P=0.009), while significant progressive increases in PTAROM were observed in the outdoor walking group (F=3.500, P=0.046). The hemiplegic side demonstrated statistically significant progressive reductions in both maximum pelvic internal rotation (PRAmax; F=3.306, P=0.046) and the ROM of pelvic rotation (PRAROM; F=4.896, P=0.012), with the non-hemiplegic side also showing significant progressive decrease in PRAROM (F=4.454, P=0.017). Further analysis identified that the significant progressive reduction in hemiplegic-side PRAmax was particularly evident in the indoor walking group (F=3.484, P=0.048).

Conclusion

Stroke patients demonstrate asymmetric alterations in pelvic tilt and obliquity between the hemiplegic and non-hemiplegic sides during the entire gait cycle. During continuous walking, progressive changes occurre in pelvic anterior tilt, range of motion of pelvic tilt and internal rotation on the hemiplegic side, while the non-hemiplegic side showes no symmetrical changes. Patients with poor walking ability experience more significant changes in pelvic asymmetry during continuous walking.

表1 室内步行组和室外步行组基线资料比较
表2 偏瘫侧和非偏瘫侧骨盆三轴最大角度比较(°)
表3 偏瘫侧和非偏瘫侧骨盆三轴活动范围比较(°,
表4 偏瘫侧和非偏瘫侧骨盆三轴活动范围差值比较(°,
表5 骨盆X轴和Z轴各组不同步行时期各指标的描述统计结果(°,
变量 组别 侧别 步行初期 步行中期 步行晚期 F P
PTAmax 分组前 偏瘫侧 30.70±1.21 31.38±1.20 31.41±1.17 3.295 0.046
非偏瘫侧 31.34±1.26 31.65±1.27 31.55±1.16 0.432 0.652
室内步行组 偏瘫侧 29.39±1.98 30.99±1.89 30.81±1.68 5.830 0.009
非偏瘫侧 29.91±1.20 31.10±1.91 30.72±1.58 2.073 0.150
室外步行组 偏瘫侧 32.01±1.43 31.78±1.51 32.01±1.64 0.257 0.655
非偏瘫侧 32.77±1.56 32.20±1.70 32.39±1.68 1.351 0.278
PTAROM 分组前 偏瘫侧 4.25±0.36 4.63±0.42 4.75±0.40 4.374 0.018
非偏瘫侧 4.90±0.44 5.00±0.49 4.35±0.38 2.070 0.138
室内步行组 偏瘫侧 3.81±0.52 4.25±0.61 4.16±0.64 1.813 0.187
非偏瘫侧 4.51±0.63 4.38±0.70 3.67±0.55 1.666 0.212
室外步行组 偏瘫侧 4.69±0.48 5.01±0.59 5.34±0.51 3.500 0.046
非偏瘫侧 5.28±0.60 5.62±0.68 5.03±0.52 0.785 0.467
PRAmax 分组前 偏瘫侧 4.81±0.86 4.53±0.88 3.87±0.89 3.306 0.046
非偏瘫侧 4.75±1.13 4.98±1.11 4.46±1.18 0.267 0.767
室内步行组 偏瘫侧 5.123±1.45 4.77±1.38 3.95±1.45 3.484 0.048
非偏瘫侧 4.70±2.12 4.86±1.68 4.25±2.15 0.358 0.703
室外步行组 偏瘫侧 4.49±0.98 4.28±1.11 3.79±1.08 0.765 0.477
非偏瘫侧 4.79±0.95 5.11±1.48 4.67±1.11 0.074 0.825
PRAROM 分组前 偏瘫侧 9.44±0.77 8.92±0.52 7.84±0.50 4.896 0.012
非偏瘫侧 9.72±0.71 9.32±0.80 8.01±0.63 4.454 0.017
室内步行组 偏瘫侧 9.66±1.11 8.89±0.76 7.47±0.72 2.674 0.091
非偏瘫侧 9.87±1.03 8.92±1.16 8.08±0.91 3.084 0.066
室外步行组 偏瘫侧 9.21±1.06 8.95±0.73 8.25±0.69 2.462 0.107
非偏瘫侧 9.58±0.99 9.71±1.11 7.94±0.87 2.200 0.133
POAmax 分组前 偏瘫侧 5.20±0.62 4.86±0.63 4.88±0.67 1.143 0.314
非偏瘫侧 3.43±0.69 3.69±0.66 3.72±0.75 0.722 0.491
室内步行组 偏瘫侧 5.11±0.92 4.90±0.87 4.70±0.90 0.562 0.578
非偏瘫侧 2.98±1.13 3.58±1.16 3.47±1.20 1.755 0.196
室外步行组 偏瘫侧 5.30±0.84 4.81±0.91 5.06±0.98 1.008 0.354
非偏瘫侧 3.88±0.81 3.79±0.70 4.00±0.91 0.104 0.902
POAROM 分组前 偏瘫侧 8.63±0.83 8.09±0.84 8.27±0.84 1.055 0.356
非偏瘫侧 8.17±0.74 8.86±0.85 8.27±0.85 1.337 0.273
室内步行组 偏瘫侧 8.15±1.13 7.83±0.98 7.70±0.99 0.406 0.671
非偏瘫侧 7.68±0.97 8.44±1.04 8.01±1.10 0.746 0.486
室外步行组 偏瘫侧 9.10±1.22 8.35±1.34 8.84±1.33 0.994 0.385
非偏瘫侧 8.67±1.12 9.27±1.30 8.53±1.29 0.735 0.490
表6 骨盆X轴和Z轴各指标的重复测量方差分析结果
变量 侧别 变异来源 SS df MS F P
PTAmax 偏瘫侧 组内 8.084 2.000 4.042 3.295 0.046
组间 44.341 1.000 44.341 0.425 0.521
组内*组间 11.473 2.000 5.737 4.677 0.014
非偏瘫侧 组内 1.245 2.000 0.623 0.432 0.652
组间 66.146 1.000 66.146 0.598 0.447
组内*组间 10.042 1.476 6.803 3.481 0.055
PTAROM 偏瘫侧 组内 3.357 2.000 1.679 4.374 0.018
组间 16.542 1.000 16.542 1.479 0.236
组内*组间 0.550 2.000 0.275 0.676 0.514
非偏瘫侧 组内 6.014 2.000 3.007 2.070 0.138
组间 23.474 1.000 23.474 2.071 0.164
组内*组间 1.244 2.000 0.622 0.428 0.654
PRAmax 偏瘫侧 组内 11.533 2.000 5.767 3.306 0.046
组间 3.494 1.000 3.494 0.064 0.802
组内*组间 0.730 2.000 0.365 0.209 0.812
非偏瘫侧 组内 3.389 2.000 1.695 0.267 0.767
组间 1.186 1.000 1.186 0.014 0.907
组内*组间 0.350 2.000 0.175 0.028 0.973
PRAROM 偏瘫侧 组内 33.309 2.000 16.654 4.896 0.012
组间 0.225 1.000 0.225 0.011 0.918
组内*组间 4.284 2.000 2.142 0.630 0.537
非偏瘫侧 组内 40.073 2.000 20.037 4.454 0.017
组间 0.274 1.000 0.274 0.009 0.924
组内*组间 4.305 2.000 2.153 0.479 0.623
POAmax 偏瘫侧 组内 1.876 1.405 1.335 1.143 0.314
组间 0.451 1.000 0.451 0.016 0.902
组内*组间 0.630 1.405 0.448 0.383 0.611
非偏瘫侧 组内 1.261 2.000 0.631 0.722 0.491
组间 5.405 1.000 5.405 0.155 0.697
组内*组间 1.503 1.936 0.776 0.860 0.427
POAROM 偏瘫侧 组内 3.782 2.000 1.891 1.055 0.356
组间 14.151 1.000 14.151 0.288 0.597
组内*组间 1.301 2.000 0.650 0.363 0.698
非偏瘫侧 组内 6.808 2.000 3.404 1.337 0.273
组间 11.352 1.000 11.352 0.253 0.620
组内*组间 0.679 2.000 0.339 0.133 0.876
表7 骨盆X轴和Z轴各指标组内重复测量方差分析结果
表8 骨盆X轴和Z轴各指标的事后LSD差异检验结果
指标 组别 对比组 平均值差(I-J) P 95%CI
上限 下限
PTAmax 分组前 PTAmax1 vs PTAmax2 −0.683 0.019 −1.244 −0.123
PTAmax1 vs PTAmax3 −0.710 0.076 −1.500 0.081
PTAmax2 vs PTAmax3 −0.027 0.924 −0.595 0.541
室内步行组 PTAmax1 vs PTAmax2 −1.597 0.007 −2.655 −0.540
PTAmax1 vs PTAmax3 −1.418 0.031 −2.682 −0.153
PTAmax2 vs PTAmax3 0.180 0.713 −0.868 1.228
室外步行组 PTAmax1 vs PTAmax2 0.231 0.416 −0.366 0.827
PTAmax1 vs PTAmax3 −0.002 0.996 −1.109 1.104
PTAmax2 vs PTAmax3 −0.233 0.441 −0.870 0.404
PTAROM 分组前 PTAROM1 vs PTAROM2 −0.377 0.073 −0.792 0.038
PTAROM1 vs PTAROM3 −0.497 0.004 −0.817 −0.178
PTAROM2 vs PTAROM3 −0.120 0.452 −0.445 0.205
室内步行组 PTAROM1 vs PTAROM2 −0.437 0.140 −1.044 0.169
PTAROM1 vs PTAROM3 −0.353 0.157 −0.866 0.159
PTAROM2 vs PTAROM3 0.084 0.709 −0.400 0.568
室外步行组 PTAROM1 vs PTAROM2 −0.316 0.297 −0.948 0.316
PTAROM1 vs PTAROM3 −0.641 0.009 −1.087 −0.195
PTAROM2 vs PTAROM3 −0.325 0.172 −0.811 0.162
PRAmax 分组前 PRAmax1 vs PRAmax2 0.281 0.360 −0.342 0.904
PRAmax1 vs PRAmax3 0.937 0.021 0.155 1.718
PRAmax2 vs PRAmax3 0.656 0.142 −0.236 1.548
室内步行组 PRAmax1 vs PRAmax2 0.356 0.220 −0.247 0.958
PRAmax1 vs PRAmax3 1.173 0.032 0.122 2.224
PRAmax2 vs PRAmax3 0.817 0.177 −0.428 2.063
室外步行组 PRAmax1 vs PRAmax2 0.206 0.699 −0.926 1.339
PRAmax1 vs PRAmax3 0.700 0.248 −0.556 1.956
PRAmax2 vs PRAmax3 0.494 0.457 −0.906 1.894
1
Belda-Lois JM, Mena-del Horno S, Bermejo-Bosch I, et al. Rehabilitation of gait after stroke: areview towards a top-down approach [J]. J Neuroeng Rehabil, 2011, 8: 66.
2
Flansbjer UB, Holmback AM, Downham D, et al. Reliability of gait performance tests in men and women with hemiparesis after stroke [J]. J Rehabil Med, 2005, 37(2): 75-82.
3
Dos Santos HM, de Oliveira LC, Bonifacio SR, et al. Use of the International Classification of Functioning, Disability and Health (ICF) to expand and standardize the assessment of quality-of-life following a stroke: proposal for the use of codes and qualifiers [J]. Disabil Rehabil, 2022, 44(24): 7449-7454.
4
Martins Dos Santos H, Pereira GS, de Oliveira LC, et al. Biopsychosocial factors associated with the state of disability after hemiparesis in the chronic phase of stroke: exploratory analysis based on the International Classification of Functioning, Disability and Health [J]. Disabil Rehabil, 2024, 46(7): 1366-1373.
5
Rozanski GM, Huntley AH, Crosby LD, et al. Lower limb muscle activity underlying temporal gait asymmetry post-stroke [J]. Clin Neurophysiol, 2020, 131(8): 1848-1858.
6
Lee Y, Kim GB, Shin S. Association between lower limb strength asymmetry and gait asymmetry: implications for gait variability in stroke survivors [J]. J Clin Med, 2025, 14(2): 380.
7
Park J, Han K. Quantifying gait asymmetry in stroke patients: a statistical parametric mapping (SPM) approach [J]. Med Sci Monit, 2025, 31: e946754.
8
Lewek MD, Bradley CE, Wutzke CJ, et al. The relationship between spatiotemporal gait asymmetry and balance in individuals with chronic stroke [J]. J Appl Biomech, 2014, 30(1): 31-36.
9
Johnson RT, Bianco NA, Finley JM. Patterns of asymmetry and energy cost generated from predictive simulations of hemiparetic gait [J]. PLoS Comput Biol, 2022, 18(9): e1010466.
10
Norvell DC, Czerniecki JM, Reiber GE, et al. The prevalence of knee pain and symptomatic knee osteoarthritis among veteran traumatic amputees and nonamputees [J]. Arch Phys Med Rehabil, 2005, 86(3): 487-493.
11
Michael KM, Allen JK, Macko RF. Reduced ambulatory activity after stroke: the role of balance, gait, and cardiovascular fitness [J]. Arch Phys Med Rehabil, 2005, 86(8): 1552-1556.
12
Wang S, Bhatt T. Gait kinematics and asymmetries affecting fall risk in people with chronic stroke: a retrospective study [J]. Biomechanics (Basel), 2022, 2(3): 453-465.
13
Ogihara H, Tsushima E, Kamo T, et al. Kinematic gait asymmetry assessment using joint angle data in patients with chronic stroke-A normalized cross-correlation approach [J]. Gait Posture, 2020, 80: 168-173.
14
Karthikbabu S, Chakrapani M, Ganesan S, et al. Relationship between pelvic alignment and weight-bearing asymmetry in community-dwelling chronic stroke survivors [J]. J Neurosci Rural Pract, 2016, 7(Suppl 1): S37-S40.
15
Fukuchi CA, Fukuchi RK, Duarte M. A public dataset of overground and treadmill walking kinematics and kinetics in healthy individuals [J]. PeerJ, 2018, 6: e4640.
16
Schmid S, Bruhin B, Ignasiak D, et al. Spinal kinematics during gait in healthy individuals across different age groups [J]. Hum Mov Sci, 2017, 54: 73-81.
17
Saunders JB, Inman VT, Eberhart HD. The major determinants in normal and pathological gait [J]. J Bone Joint Surg Am, 1953, 35-A(3): 543-558.
18
Mun K, Guo Z, Yu H. Restriction of pelvic lateral and rotational motions alters lower limb kinematics and muscle activation pattern during over-ground walking [J]. Med Biol Eng Comput, 2016, 54(11): 1621-1629.
19
Hacmon RR, Krasovsky T, Lamontagne A, et al. Deficits in intersegmental trunk coordination during walking are related to clinical balance and gait function in chronic stroke [J]. J Neurol Phys Ther, 2012, 36(4): 173-181.
20
Cruz TH, Lewek MD, Dhaher YY. Biomechanical impairments and gait adaptations post-stroke: multi-factorial associations [J]. J Biomech, 2009, 42(11): 1673-1677.
21
Goh H, Stewart JC. Poststroke fatigue is related to motor and cognitive performance: a secondary analysis [J]. J Neurol Phys Ther, 2019, 43(4): 233-239.
22
Balasubramanian CK, Neptune RR, Kautz SA. Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke [J]. Gait Posture, 2009, 29(3): 408-414.
23
Wang Y, Mukaino M, Ohtsuka K, et al. Gait characteristics of post-stroke hemiparetic patients with different walking speeds [J]. Int J Rehabil Res, 2020, 43(1): 69-75.
24
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国各类主要脑血管病诊断要点2019 [J]. 中华神经科杂志, 2019, 52(9): 710-715.
25
Warenczak-Pawlicka A, Lisinski P. Can we target close therapeutic goals in the gait re-education algorithm for stroke patients at the beginning of the rehabilitation process? [J]. Sensors (Basel), 2024, 24(11): 3416.
26
Howard KE, Reimold NK, Knight HL, et al. Relationships between mediolateral step modulation and clinical balance measures in people with chronic stroke [J]. Gait Posture, 2024, 109: 9-14.
27
van Criekinge T, Saeys W, Hallemans A, et al. Trunk biomechanics during hemiplegic gait after stroke: a systematic review [J]. Gait Posture, 2017, 54: 133-143.
28
Huang S, Yu X, Wang K, et al. Short-step adjustment and proximal compensatory strategies adopted by stroke survivors with knee extensor spasticity for obstacle crossing [J]. Front Bioeng Biotechnol, 2020, 8: 939.
29
Helbostad JL, Sturnieks DL, Menant J, et al. Consequences of lower extremity and trunk muscle fatigue on balance and functional tasks in older people: a systematic literature review [J]. BMC Geriatr, 2010, 10: 56.
30
Pulyk O, Hyryavets M, Studeniak T. Poststroke fatigue and motor recovery after ischemic stroke [J]. Wiad Lek, 2022, 75(5 pt 2): 1328-1330.
31
Goyal V, Dragunas A, Askew R L, et al. Altered biomechanical strategies of the paretic hip and knee joints during a step-up task [J]. Top Stroke Rehabil, 2023, 30(2): 137-145.
32
Thompson NE, Rubinstein D, Parrella-O'Donnell W, et al. The loss of the'pelvic step'in human evolution [J]. J Exp Biol, 2021, 224(16): jeb240440.
33
Della Croce U, Riley PO, Lelas JL, et al. A refined view of the determinants of gait [J]. Gait Posture, 2001, 14(2): 79-84.
34
Ling H, Guo H, Zhou H, et al. Effect of a rigid ankle foot orthosis and an ankle foot orthosis with an oil damper plantar flexion resistance on pelvic and thoracic movements of patients with stroke during gait [J]. Biomed Eng Online, 2023, 22(1): 9.
35
Sanchez N, Schweighofer N, Finley JM. Different biomechanical variables explain within-subjects versus between-subjects variance in step length asymmetry post-stroke [J]. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 1188-1198.
36
Choi Y, Son S, Cha Y. Pelvic belt wearing during exercise improves balance of patients with stroke: a randomized, controlled, preliminary trial [J]. J Stroke Cerebrovasc Dis, 2021, 30(8): 105820.
37
Son C, Lee A, Lee J, et al. The effect of pelvic movements of a gait training system for stroke patients: a single blind, randomized, parallel study [J]. J Neuroeng Rehabil, 2021, 18(1): 185.
38
Park SH, Hsu C, Dee W, et al. Gradual adaptation to pelvis perturbation during walking reinforces motor learning of weight shift toward the paretic side in individuals post-stroke [J]. Exp Brain Res, 2021, 239(6): 1701-1713.
39
Park SH, Lin J, Dee W, et al. Targeted pelvic constraint force induces enhanced use of the paretic leg during walking in persons post-stroke [J]. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(10): 2184-2193.
40
Boob MA, Kovela RK. Effectiveness of pelvic proprioceptive neuromuscular facilitation techniques on balance and gait parameters in chronic stroke patients: a randomized clinical trial [J]. Cureus, 2022, 14(10): e30630.
41
Jung K, Jung J, In T, et al. Effects of pelvic stabilization training with lateral and posterior tilt taping on pelvic inclination, muscle strength, and gait function in patients with stroke: a randomized controlled study [J]. Biomed Res Int, 2022, 2022: 9224668.
[1] 丁增巴姆, 杨轲, 帅维正, 陈婷, 李盼盼, 马静, 宋韦, 王萍, 王倩, 刘欢. 呼吸训练仪对慢性阻塞性肺疾病患者肺功能及依从性的影响分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 575-579.
[2] 王勇, 董家才, 关江, 何晋琴, 戴红霞, 刘经伟, 张永伦, 郑重庆. 胸腔内迷走神经阻滞复合全身麻醉在胸腔镜肺癌肺叶切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 626-631.
[3] 中华医学会结核病学分会呼吸内镜介入治疗专委会. 加速康复支气管镜术临床应用中国专家共识[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 497-502.
[4] 马逸夫, 孙芳玲, 刘婷婷, 田欣, 王文. 神经干细胞永生化的机制及其应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 251-256.
[5] 袁文康, 张冲, 张超. 肝脏外科治疗理念的变迁与技术进步[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 673-679.
[6] 丹增阿旺, 王超, 杨振华, 何正为, 张必翔, 张斌豪, 王婷. MDT协作下ERAS临床路径在肝切除围手术期中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 732-739.
[7] 余安海, 袁文康, 陈佳乐, 张超, 张冲. 肝癌患者术前预康复研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 775-779.
[8] 陈佳乐, 余安海, 袁文康, 张超, 张冲. 肝切除术围手术期监测及处理[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 785-788.
[9] 张元华, 许开, 袁昆, 于成月, 赵冬临, 孙建威, 高小康. 两种康复锻炼方式对髌骨外侧挤压综合征术后的影响[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(04): 222-230.
[10] 马燕红. 基于结构与功能评估的骨科康复CEST临床思路体系[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(04): 245-250.
[11] 胡贤瑞, 马惠, 赵科洪, 陈港琳, 何竟. 基于倾向性评分匹配分析重症脑血管疾病患者早期康复物理治疗的临床效果[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 208-213.
[12] 于帆, 迟冰玉, 朱紫嫣, 许光旭. 经皮耳迷走神经刺激治疗脑卒中后吞咽障碍的疗效分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 214-219.
[13] 刘佳成, 许晓辉, 杜艳姣, 张云亭, 段智慧. 载脂蛋白E基因多态性对急性缺血性脑卒中后抑郁的影响[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 220-226.
[14] 荣毅, 田锦秀, 庞琦良, 成爱霞. 高频重复经颅磁刺激对脑卒中后中枢性疼痛的疗效观察[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 227-231.
[15] 刘玉珍, 王征, 李树俊, 赵蕊, 徐清华. 饮食管理联合运动疗法对功能性消化不良患者的康复效果[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(04): 412-416.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?