切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2020, Vol. 14 ›› Issue (01) : 25 -28. doi: 10.11817/j.issn.1673-9248.2020.01.004

所属专题: 文献

专家论坛

技术变革推动脑卒中诊疗模式更新
武剑1,(), 宋晓微1, 魏宸铭1, 徐文灯1   
  1. 1. 102218 清华大学附属北京清华长庚医院神经内科
  • 收稿日期:2019-12-11 出版日期:2020-02-01
  • 通信作者: 武剑

Technological advancement drives the update of stroke care

Jian Wu1,(), Xiaowei Song1, Chenming Wei1, Wendeng Xu1   

  1. 1. Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
  • Received:2019-12-11 Published:2020-02-01
  • Corresponding author: Jian Wu
  • About author:
    Corresponding author: Wu Jian, Email:
引用本文:

武剑, 宋晓微, 魏宸铭, 徐文灯. 技术变革推动脑卒中诊疗模式更新[J]. 中华脑血管病杂志(电子版), 2020, 14(01): 25-28.

Jian Wu, Xiaowei Song, Chenming Wei, Wendeng Xu. Technological advancement drives the update of stroke care[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2020, 14(01): 25-28.

近年来,在科学技术的推动和国家卫生行政部门的引导下,众多学者为脑卒中防治做出了巨大的努力,并取得了一定的成绩。然而,我国在脑卒中诊疗体系中仍然面临着各地脑卒中诊疗资源分布不均,医疗技术参差不齐,能在有限时间窗内得到及时救治的脑卒中患者比例不高等问题,脑卒中带来的致残及复发仍然是当下面临的主要挑战。本文对我国急性脑卒中诊疗技术进行回顾,并结合现阶段人工智能在急性脑卒中领域的研究及应用现状进行综述,对人工智能未来在脑卒中的应用进行展望。

With the advancement of new technology and the guidance of national health administration, great progress has been made in the area of stroke care in recent years. However, a great deal of problems remain in the stroke health care system in China. The medical resources and technologies across China present huge difference, and few patients could arrive the hospital capable of stroke management within the narrow time window. The high disability and recurrence rate brought about by stroke remains to be the main challenge in the present time. This article will give a brief review of the key advances in stroke diagnosis and therapy, and a general introduction about the application of artificial intelligence in acute stroke management. In addition, some implications or prospects were also proposed here.

1
Wang W, Jiang B, Sun H, et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults [J]. Circulation, 2017, 135(8): 759-771.
2
Wu S, Wu B, Liu M, et al. Stroke in China: advances and challenges in epidemiology, prevention, and management [J]. Lancet neurology, 2019, 18(4): 394-405.
3
Hu S, Cui B, Mlynash M, et al. Stroke epidemiology and stroke policies in China from 1980 to 2017: a systematic review and meta-analysis [J]. Int J Stroke, 2019: 323849958.
4
Gado MH, Coleman RE, Merlis AL, et al. Comparison of computerized tomography and radionuclide imaging in stroke [J]. Stroke, 1976, 7(2): 109-113.
5
Hacke W, Kaste M, Fieschi C, et al. Intravenous thrombolysis with recombinant tissue-plasminogen activator for acute hemispheric stroke-the european cooperative acute stroke study (ECASS) [J]. JAMA, 1995, 274(13):1017-1025.
6
National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke [J]. N Engl J Med, 1995, 333(24): 1581-1587.
7
Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke [J]. N Engl J Med, 2008, 359(13): 1317-1329.
8
黄镪, 马青峰, 冯娟, 等. 急性缺血性脑卒中静脉溶栓决策的影响因素 [J]. 中国脑血管病杂志, 2016, 13(1): 13-16, 28.
9
Ciccone A, Valvassori L, Nichelatti M, et al. Endovascular treatment for acute ischemic stroke [J]. N Engl J Med, 2013, 368(10): 904-913.
10
Badhiwala JH, Nassiri F, Alhazzani W, et al. Endovascular Thrombectomy for Acute Ischemic Stroke: A Meta-analysis [J]. JAMA, 2015, 314(17): 1832-1843.
11
Murray NM, Unberath M, Hager GD, et al. Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review [J]. J Neurointerv Surg, 2019. pii: neurintsurg-2019-015135. [Epub ahead of print]
12
Teleb MS, Ver HA, Carter J, et al. Stroke vision, aphasia, neglect (VAN) assessment-a novel emergent large vessel occlusion screening tool: pilot study and comparison with current clinical severity indices [J]. J Neurointerv Surg, 2017, 9(2): 122-126.
13
Nazliel B, Starkman S, Liebeskind DS, et al. A brief prehospital stroke severity scale identifies ischemic stroke patients harboring persisting large arterial occlusions [J]. Stroke, 2008, 39(8): 2264-2267.
14
黄镪, 张静泽, 宋晓微, 等. 临床指标不能可靠地识别急性前循环大动脉闭塞性脑卒中 [J]. 中风与神经疾病杂志, 2018, 35(5): 425-429.
15
Amukotuwa SA, Straka M, Smith H, et al. Automated detection of intracranial large vessel occlusions on computed tomography angiography: a single center experience [J]. Stroke, 2019, 50(10): 2790-2798.
16
Sheth SA, Lopez-Rivera V, Barman A, et al. Machine learning-enabled automated determination of acute ischemic core from computed tomography angiography [J]. Stroke, 2019, 50(11): 3093-3100.
17
Barreira CM, Bouslama M, Haussen DC, et al. Automated large artery occlusion detection in stroke imaging - ALADIN Study [J]. Stroke, 2018, 49 (suppl_1): wp61.
18
Sarmento RM, Vasconcelos F, Reboucas FP, et al. Automatic neuroimage processing and analysis in stroke - a systematic review [J]. IEEE Rev Biomed Eng, 2019. [Epub ahead of print]
19
Yu Y, Guo D, Lou M, et al. Prediction of hemorrhagic transformation severity in acute stroke from source perfusion MRI [J]. IEEE Trans Biomed Eng, 2018, 65(9): 2058-2065.
20
Scalzo F, Alger JR, Hu X, et al. Multi-center prediction of hemorrhagic transformation in acute ischemic stroke using permeability imaging features [J]. Magn Reson Imaging, 2013, 31(6): 961-969.
21
Garg R, Oh E, Naidech A, et al. Automating ischemic stroke subtype classification using machine learning and natural language processing [J]. J Stroke Cerebrovasc Dis, 2019, 28(7): 2045-2051.
22
Mcconnell AC, Moioli RC, Brasil FL, et al. Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke [J]. J Rehabil Med, 2017, 49(6): 449-460.
23
Xu J, Wang X, Yin H, et al. Sequentially site-specific delivery of thrombolytics and neuroprotectant for enhanced treatment of ischemic stroke [J]. ACS NANO, 2019, 13(8): 8577-8588.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[3] 罗刚, 泮思林, 孙玲玉, 李志新, 陈涛涛, 乔思波, 庞善臣. 一种新型语义网络分析模型对室间隔完整型肺动脉闭锁和危重肺动脉瓣狭窄胎儿右心发育不良程度的评价作用[J]. 中华医学超声杂志(电子版), 2024, 21(04): 377-383.
[4] 孔德铭, 刘铮, 李睿, 钱文伟, 王飞, 蔡道章, 柴伟. 人工智能辅助全髋关节置换三维术前规划准确性评价[J]. 中华关节外科杂志(电子版), 2024, 18(04): 431-438.
[5] 何淳诺, 田志敏, 李焕玺, 吴昊越, 庄凯鹏, 周胜虎, 张浩强. 小儿发育性髋关节发育不良诊治的研究进展[J]. 中华关节外科杂志(电子版), 2024, 18(04): 497-504.
[6] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[7] 苏博兴, 肖博, 李建兴. 2024年美国泌尿外科学会年会结石领域手术治疗相关热点研究及解读[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 303-308.
[8] 莫林键, 杨舒博, 农卫赟, 程继文. 人工智能虚拟数字医师在钬激光前列腺剜除日间手术患教管理中的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 318-322.
[9] 阮星星, 黄智渊, 刘芙香, 狄金明. 从临床医师诊治患者的思路出发撰写临床研究论文[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 397-401.
[10] 张怡, 王宇洋, 司梦娇, 曹燕, 李欢欢. 脑卒中前白蛋白与肺炎发生风险相关性分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 648-651.
[11] 武继敏, 袁春雨, 王鲁佳, 陈伟霞, 李晓东, 马丽虹. 重复经颅磁刺激治疗脑卒中后中枢性疼痛的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 182-186.
[12] 李芳, 戴西望, 王凯, 郭廷昊, 涂江龙. 非瓣膜性心房颤动相关性卒中的治疗研究进展[J]. 中华脑血管病杂志(电子版), 2024, 18(04): 393-397.
[13] 周洪千, 张煜坤, 顾天舒, 胡苏涛, 姜超, 张雪, 张昊, 陶华岳, 刘行, 刘彤, 陈康寅. 既往出血性脑卒中患者行经皮冠脉介入治疗后不良事件的危险因素分析[J]. 中华脑血管病杂志(电子版), 2024, 18(04): 323-329.
[14] 邓越, 白鹏, 洪秋阳, 王桂玲. 颈部七线调衡疗法探析并病例汇报一例[J]. 中华脑血管病杂志(电子版), 2024, 18(04): 345-349.
[15] 张玮玮, 霍晓川. 人工智能时代医学生批判性思维培养的重要性[J]. 中华脑血管病杂志(电子版), 2024, 18(04): 357-359.
阅读次数
全文


摘要