切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (02) : 70 -76. doi: 10.11817/j.issn.1673-9248.2021.02.002

所属专题: 文献

专家论坛

脑出血中的神经炎症与药物治疗前景
张锐毅1, 张艳1, 刘扬1, 李红敏1, 苏秋羊1, 薛孟周1,()   
  1. 1. 450000 郑州大学第二附属医院脑血管病科、河南省脑出血脑损伤国际联合实验室
  • 收稿日期:2021-01-06 出版日期:2021-04-01
  • 通信作者: 薛孟周
  • 基金资助:
    国家自然科学基金面上项目(82071331,81870942); 国家自然科学基金重点国际(地区)合作研究项目(81520108011); 国家重点研发计划项目(2018YFC1312200)

Neuroinflammation in intracerebral hemorrhage and related pharmaceutical prospects

Ruiyi Zhang1, Yan Zhang1, Yang Liu1, Hongmin Li1, Qiuyang Su1, Mengzhou Xue1,()   

  1. 1. Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou 450000, China
  • Received:2021-01-06 Published:2021-04-01
  • Corresponding author: Mengzhou Xue
引用本文:

张锐毅, 张艳, 刘扬, 李红敏, 苏秋羊, 薛孟周. 脑出血中的神经炎症与药物治疗前景[J/OL]. 中华脑血管病杂志(电子版), 2021, 15(02): 70-76.

Ruiyi Zhang, Yan Zhang, Yang Liu, Hongmin Li, Qiuyang Su, Mengzhou Xue. Neuroinflammation in intracerebral hemorrhage and related pharmaceutical prospects[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2021, 15(02): 70-76.

自发性脑出血是一种具有高发病率和病死率的严重神经系统疾病,往往伴随着死亡和残疾等灾难性结局。尽管针对脑出血原发性脑损伤治疗的显微外科技术取得了长足的进步,但对脑出血发生后的炎症级联反应与其引起的继发性脑损伤的治疗仍进展甚微。另一方面,许多临床前研究的结果已经表明,包括小胶质细胞、星形胶质细胞和T淋巴细胞在内的多种炎症细胞在神经炎症与继发性脑损伤中发挥了主要作用。对于这些炎症细胞及具体机制的研究也为脑出血治疗提供了新的潜在靶点。目前,已有多种药物在脑出血动物模型和早期临床试验中显现出了减少神经炎症,改善继发性脑损伤的初步效果。本文总结整理了脑出血后神经炎症参与继发性脑损伤的机制以及具有临床转化潜力的几种药物,以期为研究者提供参考。

Spontaneous intracerebral hemorrhage is a serious neurological disease with high morbidity and mortality, which is often accompanied by catastrophic outcomes such as death and disability. Although great progress has been made in microsurgical techniques for the treatment of primary brain injury after intracerebral hemorrhage, little progress has been made in the treatment of inflammatory cascade reaction and secondary brain injury after intracerebral hemorrhage. On the other hand, the results of many preclinical studies have shown that many types of inflammatory cells, including microglia, astrocytes and T lymphocytes, play a major role in neuroinflammation and secondary brain injury. These inflammatory cells and their specific mechanisms also provide new potential targets for the treatment of intracerebral hemorrhage. At present, a variety of drugs have shown the preliminary effect of reducing nerve inflammation and ameliorating secondary brain injury in animal models of cerebral hemorrhage and early-stage clinical trials. This article summarizes the mechanism of neuroinflammation involved in secondary brain injury after intracerebral hemorrhage and several drugs with clinical translational potential, in order to provide reference for researchers.

1
Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage [J]. Lancet, 2009, 373(9675): 1632-1644.
2
Van Asch CJ, Luitse MJ, Rinkel GJ, et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis [J]. Lancet Neurol, 2010, 9(2): 167-176.
3
Fogelholm R, Murros K, Rissanen A, et al. Long term survival after primary intracerebral haemorrhage: a retrospective population based study [J]. J Neurol Neurosurg Psychiatry, 2005, 76(11): 1534-1538.
4
Wan J, Ren H, Wang J. Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage [J]. Stroke Vasc Neurol, 2019, 4(2): 93-95.
5
Bai Q, Xue M, Yong VW. Microglia and macrophage phenotypes in intracerebral haemorrhage injury: therapeutic opportunities [J]. Brain, 2020, 143(5): 1297-1314.
6
Xue M, Yong VW. Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation [J]. Lancet Neurol, 2020, 19(12): 1023-1032.
7
Babu R, Bagley JH, Di C, et al. Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention [J]. Neurosurg Focus, 2012, 32(4): E8.
8
Zhou Y, Wang Y, Wang J, et al. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation [J]. Prog Neurobiol, 2014, 115: 25-44.
9
Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage [J]. Prog Neurobiol, 2010, 92(4): 463-477.
10
Wang J, Doré S. Inflammation after intracerebral hemorrhage [J]. J Cereb Blood Flow Metab, 2007, 27(5): 894-908.
11
Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets [J]. Lancet Neurol, 2012, 11(8): 720-731.
12
Lawson LJ, Perry VH, Dri P, et al. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain [J]. Neuroscience, 1990, 39(1): 151-170.
13
Xiong XY, Liu L, Yang QW. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke [J]. Prog Neurobiol, 2016, 142: 23-44.
14
Boche D, Perry V, Nicoll J. Activation patterns of microglia and their identification in the human brain [J]. Neuropathol Appl Neurobiol, 2013, 39(1): 3-18.
15
Shtaya A, Bridges LR, Esiri MM, et al. Rapid neuroinflammatory changes in human acute intracerebral hemorrhage [J]. Ann Clin Transl Neurol, 2019, 6(8): 1465-1479.
16
Jiang C, Wang Y, Hu Q, et al. Immune changes in peripheral blood and hematoma of patients with intracerebral hemorrhage [J]. FASEB J, 2020, 34(2): 2774-2791.
17
Yong VW. Metalloproteinases: mediators of pathology and regeneration in the CNS [J]. Nat Rev Neurosci, 2005, 6(12): 931-944.
18
Lattanzi S, Di Napoli M, Ricci S, et al. Matrix metalloproteinases in acute intracerebral hemorrhage [J]. Neurotherapeutics, 2020, 17(2): 484-496.
19
Zhang ZL, Liu YG, Huang QB, et al. Nuclear factor-κB activation in perihematomal brain tissue correlates with outcome in patients with intracerebral hemorrhage [J]. J Neuroinflammation, 2015, 12(1): 1-7.
20
Rodríguez-Yáñez M, Brea D, Arias S, et al. Increased expression of Toll-like receptors 2 and 4 is associated with poor outcome in intracerebral hemorrhage [J]. J Neuroimmunol, 2012, 247(1-2): 75-80.
21
Liddelow S, Barres B. Snapshot: astrocytes in health and disease [J]. Cell, 2015, 162(5): 1170-1170. e1.
22
Scimemi A. Astrocytes and the warning signs of intracerebral hemorrhagic stroke [J]. Neural Plast, 2018, 2018: 7301623.
23
Jha MK, Lee WH, Suk K. Functional polarization of neuroglia: implications in neuroinflammation and neurological disorders [J]. Biochem Pharmacol, 2016, 103: 1-16.
24
Jha MK, Jo M, Kim JH, et al. Microglia-astrocyte crosstalk: an intimate molecular conversation [J]. Neuroscientist, 2019, 25(3): 227-240.
25
Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia [J]. Nature, 2017, 541(7638): 481-487.
26
Lively S, Schlichter LC. Age-related comparisons of evolution of the inflammatory response after intracerebral hemorrhage in rats [J]. Transl Stroke Res, 2012, 3(1): 132-146.
27
Tejima E, Zhao BQ, Tsuji K, et al. Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage [J]. J Cereb Blood Flow Metab, 2007, 27(3): 460-468.
28
Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage [J]. Brain, 2005, 128(7): 1622-1633.
29
Shavit E, Michaelson DM, Chapman J. Anatomical localization of protease‐activated receptor‐1 and protease‐mediated neuroglilal crosstalk on peri‐synaptic astrocytic endfeet [J]. J Neurochem, 2011, 119(3): 460-473.
30
Sweeney AM, Fleming KE, Mccauley JP, et al. PAR1 activation induces rapid changes in glutamate uptake and astrocyte morphology [J]. Sci Rep, 2017, 7: 43606.
31
Chiu CD, Yao NW, Guo JH, et al. Inhibition of astrocytic activity alleviates sequela in acute stages of intracerebral hemorrhage [J]. Oncotarget, 2017, 8(55): 94850.
32
Yoshimura A, Sakaguchi R, Suzuki M, et al. Post-ischemic inflammation in the brain [J]. Front Immunol, 2012, 3: 132.
33
Hendrix S, Nitsch R. The role of T helper cells in neuroprotection and regeneration [J]. J Neuroimmunol, 2007, 184(1-2): 100-112.
34
Yilmaz G, Arumugam TV, Stokes KY, et al. Role of T lymphocytes and interferon-in ischemic stroke [J]. Circulation, 2006, 113(17): 2105-2112.
35
Hum PD, Subramanian S, Parker SM, et al. T-and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation [J]. J Cereb Blood Flow Metab, 2007, 27(11): 1798-1805.
36
Xue M, Del Bigio MR. Comparison of brain cell death and inflammatory reaction in three models of intracerebral hemorrhage in adult rats [J]. J Stroke Cerebrovasc Dis, 2003, 12(3): 152-159.
37
Loftspring MC, Mcdole J, Lu A, et al. Intracerebral hemorrhage leads to infiltration of several leukocyte populations with concomitant pathophysiological changes [J]. J Cereb Blood Flow Metab, 2009, 29(1): 137-143.
38
Guo F, Li X, Chen L, et al. Study of relationship between inflammatory response and apoptosis in perihematoma region in patients with intracerebral hemorrhage [J]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2006, 18(5): 290-293.
39
Arumugam TV, Granger DN, Mattson MP. Stroke and T-cells [J]. Neuromolecular Med, 2005, 7(3): 229-242.
40
Mackenzie JM, Clayton JA. Early cellular events in the penumbra of human spontaneous intracerebral hemorrhage [J]. J Stroke Cerebrovasc Dis, 1999, 8(1): 1-8.
41
Kayhanian S, Weerasuriya C, Rai U, et al. Prognostic value of peripheral leukocyte counts and plasma glucose in intracerebral haemorrhage [J]. J Clin Neurosci, 2017, 41: 50-53.
42
Faissner S, Mahjoub Y, Mishra M, et al. Unexpected additive effects of minocycline and hydroxychloroquine in models of multiple sclerosis: Prospective combination treatment for progressive disease? [J]. Mult Scler, 2018, 24(12): 1543-1556.
43
Sheng Z, Liu Y, Li H, et al. Efficacy of minocycline in acute ischemic stroke: a systematic review and meta-analysis of rodent and clinical studies [J]. Front Neurol, 2018, 9: 1103.
44
Yrjänheikki J, Keinänen R, Pellikka M, et al. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia [J]. Proc Natl Acad Sci, 1998, 95(26): 15769-15774.
45
Yong VW, Wells J, Giuliani F, et al. The promise of minocycline in neurology [J]. Lancet Neurol, 2004, 3(12): 744-751.
46
Naderi Y, Panahi Y, Barreto GE, et al. Neuroprotective effects of minocycline on focal cerebral ischemia injury: a systematic review [J]. Neural Regen Res, 2020, 15(5): 773.
47
Kobayashi K, Imagama S, Ohgomori T, et al. Minocycline selectively inhibits M1 polarization of microglia [J]. Cell Death Dis, 2013, 4(3): e525-e525.
48
Power C, Henry S, Del Bigio MR, et al. Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases [J]. Ann Neurol, 2003, 53(6): 731-742.
49
Xue M, Mikliaeva EI, Casha S, et al. Improving outcomes of neuroprotection by minocycline: guides from cell culture and intracerebral hemorrhage in mice [J]. Am J Pathol, 2010, 176(3): 1193-1202.
50
Xu L, Fagan SC, Waller JL, et al. Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats [J]. BMC Neurol, 2004, 4(1): 1-7.
51
Fouda AY, Newsome AS, Spellicy S, et al. Minocycline in acute cerebral hemorrhage: an early phase randomized trial [J]. Stroke, 2017, 48(10): 2885-2887.
52
Chang J, Kim‐Tenser M, Emanuel B, et al. Minocycline and matrix metalloproteinase inhibition in acute intracerebral hemorrhage: a pilot study [J]. Eur J Neurol, 2017, 24(11): 1384-1391.
53
Cohen JA, Chun J. Mechanisms of fingolimod's efficacy and adverse effects in multiple sclerosis [J]. Ann Neurol, 2011, 69(5): 759-777.
54
Kappos L, Radue EW, O'connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis [J]. N Engl J Med, 2010, 362(5): 387-401.
55
Chiba K. FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors [J]. Pharmacol Ther, 2005, 108(3): 308-319.
56
Lee CW, Choi JW, Chun J. Neurological S1P signaling as an emerging mechanism of action of oral FTY720 (fingolimod) in multiple sclerosis [J]. Arch Pharm Res, 2010, 33(10): 1567-1574.
57
Qin C, Fan WH, Liu Q, et al. Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway [J]. Stroke, 2017, 48(12): 3336-3346.
58
Das A, Arifuzzaman S, Kim SH, et al. FTY720 (fingolimod) regulates key target genes essential for inflammation in microglial cells as defined by high-resolution mRNA sequencing [J]. Neuropharmacology, 2017, 119: 1-14.
59
Lu L, Barfejani AH, Qin T, et al. Fingolimod exerts neuroprotective effects in a mouse model of intracerebral hemorrhage [J]. Brain Res, 2014, 1555: 89-96.
60
Rolland WB, Lekic T, Krafft PR, et al. Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage [J]. Exp Neurol, 2013, 241: 45-55.
61
Fu Y, Hao J, Zhang N, et al. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study [J]. JAMA Neurol, 2014, 71(9): 1092-1101.
62
Arefieva T, Filatova AY, Potekhina A, et al. Immunotropic effects and proposed mechanism of action for 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors (statins) [J]. Biochemistry (Mosc), 2018, 83(8): 874-889.
63
Ewen T, Qiuting L, Chaogang T, et al. Neuroprotective effect of atorvastatin involves suppression of TNF-α and upregulation of IL-10 in a rat model of intracerebral hemorrhage [J]. Cell Biochem Biophys, 2013, 66(2): 337-346.
64
Tapia-Perez H, Sanchez-Aguilar M, Torres-Corzo J, et al. Use of statins for the treatment of spontaneous intracerebral hemorrhage: results of a pilot study [J]. J Neurol Surg A Cent Eur Neurosurg, 2009, 70(1): 15-20.
[1] 张静, 刘畅, 华成舸. 妊娠期患者口腔诊疗进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(05): 340-344.
[2] 严华悦, 刘子祥, 周少波. 磷酸烯醇式丙酮酸羧激酶-1在恶性肿瘤中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 452-456.
[3] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[4] 王永楠, 汤畅通, 殷杰, 谭溢涛. 微创钻孔引流术与神经内镜血肿清除术治疗临界量基底节脑出血的效果对比分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 286-292.
[5] 张志超, 李陈, 韩惠, 周夏, 洪家康. 经额平行白质纤维束立体定向血肿穿刺引流术与神经内镜下血肿清除术治疗基底节脑出血的临床对比分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 299-303.
[6] 潘冬生, 梁国标. 颅脑创伤治疗的最新进展与未来趋势[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 193-197.
[7] 汤畅通, 王永楠, 王诗筌. 颅脑外伤后阵发性交感神经兴奋患者的药物治疗效果分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 233-237.
[8] 吴天宇, 刘子璇, 杨浦鑫, 贾思明, 丁凯, 程晓东, 李泳龙, 陈伟, 吕红芝, 张奇. 腰椎间盘突出症保守治疗进展[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 379-384.
[9] 刘国龙, 王鹏, 谭超, 杨辉, 彭菊红. 神经外科机器人辅助双通道颅内血肿清除术治疗高血压性脑出血[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 254-256.
[10] 景方坤, 周建波, 王全才, 黄海韬, 李岩峰, 徐杨熙. 神经导航引导下治疗基底节高血压脑出血的短期疗效预测[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 154-159.
[11] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
[12] 陈秋怡, 林熙, 刘珍银. 淋巴管畸形分子机制的研究进展[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 374-379.
[13] 张成惠, 闫中瑞, 盛志强, 袁嫣然. 脑肌酸缺乏症诊断与治疗研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 270-275.
[14] 胡瑞芳, 樊丽娟. 食管鳞状上皮内瘤变诊断的生物标志物研究进展及其非内镜治疗现状[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 281-286.
[15] 穆巴拉克·伊力哈, 徐霁华, 鲁明. 急性轻型卒中微量脑出血误诊病例的临床特点及影像学表现分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 441-445.
阅读次数
全文


摘要