切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (02) : 70 -76. doi: 10.11817/j.issn.1673-9248.2021.02.002

所属专题: 文献

专家论坛

脑出血中的神经炎症与药物治疗前景
张锐毅1, 张艳1, 刘扬1, 李红敏1, 苏秋羊1, 薛孟周1,()   
  1. 1. 450000 郑州大学第二附属医院脑血管病科、河南省脑出血脑损伤国际联合实验室
  • 收稿日期:2021-01-06 出版日期:2021-04-01
  • 通信作者: 薛孟周
  • 基金资助:
    国家自然科学基金面上项目(82071331,81870942); 国家自然科学基金重点国际(地区)合作研究项目(81520108011); 国家重点研发计划项目(2018YFC1312200)

Neuroinflammation in intracerebral hemorrhage and related pharmaceutical prospects

Ruiyi Zhang1, Yan Zhang1, Yang Liu1, Hongmin Li1, Qiuyang Su1, Mengzhou Xue1,()   

  1. 1. Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou 450000, China
  • Received:2021-01-06 Published:2021-04-01
  • Corresponding author: Mengzhou Xue
引用本文:

张锐毅, 张艳, 刘扬, 李红敏, 苏秋羊, 薛孟周. 脑出血中的神经炎症与药物治疗前景[J]. 中华脑血管病杂志(电子版), 2021, 15(02): 70-76.

Ruiyi Zhang, Yan Zhang, Yang Liu, Hongmin Li, Qiuyang Su, Mengzhou Xue. Neuroinflammation in intracerebral hemorrhage and related pharmaceutical prospects[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2021, 15(02): 70-76.

自发性脑出血是一种具有高发病率和病死率的严重神经系统疾病,往往伴随着死亡和残疾等灾难性结局。尽管针对脑出血原发性脑损伤治疗的显微外科技术取得了长足的进步,但对脑出血发生后的炎症级联反应与其引起的继发性脑损伤的治疗仍进展甚微。另一方面,许多临床前研究的结果已经表明,包括小胶质细胞、星形胶质细胞和T淋巴细胞在内的多种炎症细胞在神经炎症与继发性脑损伤中发挥了主要作用。对于这些炎症细胞及具体机制的研究也为脑出血治疗提供了新的潜在靶点。目前,已有多种药物在脑出血动物模型和早期临床试验中显现出了减少神经炎症,改善继发性脑损伤的初步效果。本文总结整理了脑出血后神经炎症参与继发性脑损伤的机制以及具有临床转化潜力的几种药物,以期为研究者提供参考。

Spontaneous intracerebral hemorrhage is a serious neurological disease with high morbidity and mortality, which is often accompanied by catastrophic outcomes such as death and disability. Although great progress has been made in microsurgical techniques for the treatment of primary brain injury after intracerebral hemorrhage, little progress has been made in the treatment of inflammatory cascade reaction and secondary brain injury after intracerebral hemorrhage. On the other hand, the results of many preclinical studies have shown that many types of inflammatory cells, including microglia, astrocytes and T lymphocytes, play a major role in neuroinflammation and secondary brain injury. These inflammatory cells and their specific mechanisms also provide new potential targets for the treatment of intracerebral hemorrhage. At present, a variety of drugs have shown the preliminary effect of reducing nerve inflammation and ameliorating secondary brain injury in animal models of cerebral hemorrhage and early-stage clinical trials. This article summarizes the mechanism of neuroinflammation involved in secondary brain injury after intracerebral hemorrhage and several drugs with clinical translational potential, in order to provide reference for researchers.

1
Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage [J]. Lancet, 2009, 373(9675): 1632-1644.
2
Van Asch CJ, Luitse MJ, Rinkel GJ, et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis [J]. Lancet Neurol, 2010, 9(2): 167-176.
3
Fogelholm R, Murros K, Rissanen A, et al. Long term survival after primary intracerebral haemorrhage: a retrospective population based study [J]. J Neurol Neurosurg Psychiatry, 2005, 76(11): 1534-1538.
4
Wan J, Ren H, Wang J. Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage [J]. Stroke Vasc Neurol, 2019, 4(2): 93-95.
5
Bai Q, Xue M, Yong VW. Microglia and macrophage phenotypes in intracerebral haemorrhage injury: therapeutic opportunities [J]. Brain, 2020, 143(5): 1297-1314.
6
Xue M, Yong VW. Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation [J]. Lancet Neurol, 2020, 19(12): 1023-1032.
7
Babu R, Bagley JH, Di C, et al. Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention [J]. Neurosurg Focus, 2012, 32(4): E8.
8
Zhou Y, Wang Y, Wang J, et al. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation [J]. Prog Neurobiol, 2014, 115: 25-44.
9
Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage [J]. Prog Neurobiol, 2010, 92(4): 463-477.
10
Wang J, Doré S. Inflammation after intracerebral hemorrhage [J]. J Cereb Blood Flow Metab, 2007, 27(5): 894-908.
11
Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets [J]. Lancet Neurol, 2012, 11(8): 720-731.
12
Lawson LJ, Perry VH, Dri P, et al. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain [J]. Neuroscience, 1990, 39(1): 151-170.
13
Xiong XY, Liu L, Yang QW. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke [J]. Prog Neurobiol, 2016, 142: 23-44.
14
Boche D, Perry V, Nicoll J. Activation patterns of microglia and their identification in the human brain [J]. Neuropathol Appl Neurobiol, 2013, 39(1): 3-18.
15
Shtaya A, Bridges LR, Esiri MM, et al. Rapid neuroinflammatory changes in human acute intracerebral hemorrhage [J]. Ann Clin Transl Neurol, 2019, 6(8): 1465-1479.
16
Jiang C, Wang Y, Hu Q, et al. Immune changes in peripheral blood and hematoma of patients with intracerebral hemorrhage [J]. FASEB J, 2020, 34(2): 2774-2791.
17
Yong VW. Metalloproteinases: mediators of pathology and regeneration in the CNS [J]. Nat Rev Neurosci, 2005, 6(12): 931-944.
18
Lattanzi S, Di Napoli M, Ricci S, et al. Matrix metalloproteinases in acute intracerebral hemorrhage [J]. Neurotherapeutics, 2020, 17(2): 484-496.
19
Zhang ZL, Liu YG, Huang QB, et al. Nuclear factor-κB activation in perihematomal brain tissue correlates with outcome in patients with intracerebral hemorrhage [J]. J Neuroinflammation, 2015, 12(1): 1-7.
20
Rodríguez-Yáñez M, Brea D, Arias S, et al. Increased expression of Toll-like receptors 2 and 4 is associated with poor outcome in intracerebral hemorrhage [J]. J Neuroimmunol, 2012, 247(1-2): 75-80.
21
Liddelow S, Barres B. Snapshot: astrocytes in health and disease [J]. Cell, 2015, 162(5): 1170-1170. e1.
22
Scimemi A. Astrocytes and the warning signs of intracerebral hemorrhagic stroke [J]. Neural Plast, 2018, 2018: 7301623.
23
Jha MK, Lee WH, Suk K. Functional polarization of neuroglia: implications in neuroinflammation and neurological disorders [J]. Biochem Pharmacol, 2016, 103: 1-16.
24
Jha MK, Jo M, Kim JH, et al. Microglia-astrocyte crosstalk: an intimate molecular conversation [J]. Neuroscientist, 2019, 25(3): 227-240.
25
Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia [J]. Nature, 2017, 541(7638): 481-487.
26
Lively S, Schlichter LC. Age-related comparisons of evolution of the inflammatory response after intracerebral hemorrhage in rats [J]. Transl Stroke Res, 2012, 3(1): 132-146.
27
Tejima E, Zhao BQ, Tsuji K, et al. Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage [J]. J Cereb Blood Flow Metab, 2007, 27(3): 460-468.
28
Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage [J]. Brain, 2005, 128(7): 1622-1633.
29
Shavit E, Michaelson DM, Chapman J. Anatomical localization of protease‐activated receptor‐1 and protease‐mediated neuroglilal crosstalk on peri‐synaptic astrocytic endfeet [J]. J Neurochem, 2011, 119(3): 460-473.
30
Sweeney AM, Fleming KE, Mccauley JP, et al. PAR1 activation induces rapid changes in glutamate uptake and astrocyte morphology [J]. Sci Rep, 2017, 7: 43606.
31
Chiu CD, Yao NW, Guo JH, et al. Inhibition of astrocytic activity alleviates sequela in acute stages of intracerebral hemorrhage [J]. Oncotarget, 2017, 8(55): 94850.
32
Yoshimura A, Sakaguchi R, Suzuki M, et al. Post-ischemic inflammation in the brain [J]. Front Immunol, 2012, 3: 132.
33
Hendrix S, Nitsch R. The role of T helper cells in neuroprotection and regeneration [J]. J Neuroimmunol, 2007, 184(1-2): 100-112.
34
Yilmaz G, Arumugam TV, Stokes KY, et al. Role of T lymphocytes and interferon-in ischemic stroke [J]. Circulation, 2006, 113(17): 2105-2112.
35
Hum PD, Subramanian S, Parker SM, et al. T-and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation [J]. J Cereb Blood Flow Metab, 2007, 27(11): 1798-1805.
36
Xue M, Del Bigio MR. Comparison of brain cell death and inflammatory reaction in three models of intracerebral hemorrhage in adult rats [J]. J Stroke Cerebrovasc Dis, 2003, 12(3): 152-159.
37
Loftspring MC, Mcdole J, Lu A, et al. Intracerebral hemorrhage leads to infiltration of several leukocyte populations with concomitant pathophysiological changes [J]. J Cereb Blood Flow Metab, 2009, 29(1): 137-143.
38
Guo F, Li X, Chen L, et al. Study of relationship between inflammatory response and apoptosis in perihematoma region in patients with intracerebral hemorrhage [J]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2006, 18(5): 290-293.
39
Arumugam TV, Granger DN, Mattson MP. Stroke and T-cells [J]. Neuromolecular Med, 2005, 7(3): 229-242.
40
Mackenzie JM, Clayton JA. Early cellular events in the penumbra of human spontaneous intracerebral hemorrhage [J]. J Stroke Cerebrovasc Dis, 1999, 8(1): 1-8.
41
Kayhanian S, Weerasuriya C, Rai U, et al. Prognostic value of peripheral leukocyte counts and plasma glucose in intracerebral haemorrhage [J]. J Clin Neurosci, 2017, 41: 50-53.
42
Faissner S, Mahjoub Y, Mishra M, et al. Unexpected additive effects of minocycline and hydroxychloroquine in models of multiple sclerosis: Prospective combination treatment for progressive disease? [J]. Mult Scler, 2018, 24(12): 1543-1556.
43
Sheng Z, Liu Y, Li H, et al. Efficacy of minocycline in acute ischemic stroke: a systematic review and meta-analysis of rodent and clinical studies [J]. Front Neurol, 2018, 9: 1103.
44
Yrjänheikki J, Keinänen R, Pellikka M, et al. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia [J]. Proc Natl Acad Sci, 1998, 95(26): 15769-15774.
45
Yong VW, Wells J, Giuliani F, et al. The promise of minocycline in neurology [J]. Lancet Neurol, 2004, 3(12): 744-751.
46
Naderi Y, Panahi Y, Barreto GE, et al. Neuroprotective effects of minocycline on focal cerebral ischemia injury: a systematic review [J]. Neural Regen Res, 2020, 15(5): 773.
47
Kobayashi K, Imagama S, Ohgomori T, et al. Minocycline selectively inhibits M1 polarization of microglia [J]. Cell Death Dis, 2013, 4(3): e525-e525.
48
Power C, Henry S, Del Bigio MR, et al. Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases [J]. Ann Neurol, 2003, 53(6): 731-742.
49
Xue M, Mikliaeva EI, Casha S, et al. Improving outcomes of neuroprotection by minocycline: guides from cell culture and intracerebral hemorrhage in mice [J]. Am J Pathol, 2010, 176(3): 1193-1202.
50
Xu L, Fagan SC, Waller JL, et al. Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats [J]. BMC Neurol, 2004, 4(1): 1-7.
51
Fouda AY, Newsome AS, Spellicy S, et al. Minocycline in acute cerebral hemorrhage: an early phase randomized trial [J]. Stroke, 2017, 48(10): 2885-2887.
52
Chang J, Kim‐Tenser M, Emanuel B, et al. Minocycline and matrix metalloproteinase inhibition in acute intracerebral hemorrhage: a pilot study [J]. Eur J Neurol, 2017, 24(11): 1384-1391.
53
Cohen JA, Chun J. Mechanisms of fingolimod's efficacy and adverse effects in multiple sclerosis [J]. Ann Neurol, 2011, 69(5): 759-777.
54
Kappos L, Radue EW, O'connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis [J]. N Engl J Med, 2010, 362(5): 387-401.
55
Chiba K. FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors [J]. Pharmacol Ther, 2005, 108(3): 308-319.
56
Lee CW, Choi JW, Chun J. Neurological S1P signaling as an emerging mechanism of action of oral FTY720 (fingolimod) in multiple sclerosis [J]. Arch Pharm Res, 2010, 33(10): 1567-1574.
57
Qin C, Fan WH, Liu Q, et al. Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway [J]. Stroke, 2017, 48(12): 3336-3346.
58
Das A, Arifuzzaman S, Kim SH, et al. FTY720 (fingolimod) regulates key target genes essential for inflammation in microglial cells as defined by high-resolution mRNA sequencing [J]. Neuropharmacology, 2017, 119: 1-14.
59
Lu L, Barfejani AH, Qin T, et al. Fingolimod exerts neuroprotective effects in a mouse model of intracerebral hemorrhage [J]. Brain Res, 2014, 1555: 89-96.
60
Rolland WB, Lekic T, Krafft PR, et al. Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage [J]. Exp Neurol, 2013, 241: 45-55.
61
Fu Y, Hao J, Zhang N, et al. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study [J]. JAMA Neurol, 2014, 71(9): 1092-1101.
62
Arefieva T, Filatova AY, Potekhina A, et al. Immunotropic effects and proposed mechanism of action for 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors (statins) [J]. Biochemistry (Mosc), 2018, 83(8): 874-889.
63
Ewen T, Qiuting L, Chaogang T, et al. Neuroprotective effect of atorvastatin involves suppression of TNF-α and upregulation of IL-10 in a rat model of intracerebral hemorrhage [J]. Cell Biochem Biophys, 2013, 66(2): 337-346.
64
Tapia-Perez H, Sanchez-Aguilar M, Torres-Corzo J, et al. Use of statins for the treatment of spontaneous intracerebral hemorrhage: results of a pilot study [J]. J Neurol Surg A Cent Eur Neurosurg, 2009, 70(1): 15-20.
[1] 段燕, 郭欣, 吕慧芳, 王国利, 黄明光, 董英俊. 乳腺癌患者辅助化疗后感染肺孢子菌一例[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 318-321.
[2] 中华医学会骨科学分会关节外科学组, 广东省医学会骨质疏松和骨矿盐疾病分会, 广东省佛山市顺德区第三人民医院. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(06): 751-764.
[3] 江泽莹, 王安婷, 王姣丽, 陈慈, 周秋玲, 黄燕娟, 周芳, 薛琰, 周剑烽, 谭文勇, 杜美芳. 多种植物油组分预防肿瘤放化疗相关毒性反应的效果分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 523-527.
[4] 汪必涛, 王征, 王国斌. 林奇综合征的治疗现状及进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 332-335.
[5] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[6] 刘政委, 仪立志, 尹夕龙, 孔文龙, 纠智松, 张文源. 锥颅血肿外引流与神经内镜手术治疗老年基底节区高血压性脑出血的疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 299-303.
[7] 运陌, 李茂芳, 王浩, 刘东远. 微创穿刺引流联合吡拉西坦、乌拉地尔治疗基底节区高血压性脑出血的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 278-285.
[8] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[9] 韦维, 李忠华, 黄礼德. 机器人辅助第四脑室血肿穿刺抽吸外引流术[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 255-256.
[10] 陈显金, 吴芹芹, 何长春, 张庆华. 利用多模态医学数据和机器学习构建脑出血预后预测模型的研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 193-198.
[11] 谭可, 李锦平, 彭玉涛, 吴文汧, 杨子文, 汪阳, 陶立波, 刘畅. 机器人辅助立体定向血肿引流术治疗自发性脑出血疗效及卫生经济学评价[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 205-214.
[12] 戴俊, 李硕, 曹影, 汪守峰, 宋红毛, 蔡菁菁, 邵敏, 陈莉, 程雷, 怀德. 鼻内镜下改良高选择性翼管神经低温等离子消融术对中重度变应性鼻炎的效果研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 689-693.
[13] 丁晶, 李培雯, 许迎春. 醒脑开窍针刺法在神经急重症中的应用[J]. 中华针灸电子杂志, 2023, 12(04): 161-164.
[14] 赵暾, 徐霁华, 何有娣, 鲁明. 误诊为脑梗死且险些溶栓的急性自发微量脑出血一例[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 369-372.
[15] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
阅读次数
全文


摘要