1 |
Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage [J]. Lancet, 2009, 373(9675): 1632-1644.
|
2 |
Van Asch CJ, Luitse MJ, Rinkel GJ, et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis [J]. Lancet Neurol, 2010, 9(2): 167-176.
|
3 |
Fogelholm R, Murros K, Rissanen A, et al. Long term survival after primary intracerebral haemorrhage: a retrospective population based study [J]. J Neurol Neurosurg Psychiatry, 2005, 76(11): 1534-1538.
|
4 |
Wan J, Ren H, Wang J. Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage [J]. Stroke Vasc Neurol, 2019, 4(2): 93-95.
|
5 |
Bai Q, Xue M, Yong VW. Microglia and macrophage phenotypes in intracerebral haemorrhage injury: therapeutic opportunities [J]. Brain, 2020, 143(5): 1297-1314.
|
6 |
Xue M, Yong VW. Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation [J]. Lancet Neurol, 2020, 19(12): 1023-1032.
|
7 |
Babu R, Bagley JH, Di C, et al. Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention [J]. Neurosurg Focus, 2012, 32(4): E8.
|
8 |
Zhou Y, Wang Y, Wang J, et al. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation [J]. Prog Neurobiol, 2014, 115: 25-44.
|
9 |
Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage [J]. Prog Neurobiol, 2010, 92(4): 463-477.
|
10 |
Wang J, Doré S. Inflammation after intracerebral hemorrhage [J]. J Cereb Blood Flow Metab, 2007, 27(5): 894-908.
|
11 |
Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets [J]. Lancet Neurol, 2012, 11(8): 720-731.
|
12 |
Lawson LJ, Perry VH, Dri P, et al. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain [J]. Neuroscience, 1990, 39(1): 151-170.
|
13 |
Xiong XY, Liu L, Yang QW. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke [J]. Prog Neurobiol, 2016, 142: 23-44.
|
14 |
Boche D, Perry V, Nicoll J. Activation patterns of microglia and their identification in the human brain [J]. Neuropathol Appl Neurobiol, 2013, 39(1): 3-18.
|
15 |
Shtaya A, Bridges LR, Esiri MM, et al. Rapid neuroinflammatory changes in human acute intracerebral hemorrhage [J]. Ann Clin Transl Neurol, 2019, 6(8): 1465-1479.
|
16 |
Jiang C, Wang Y, Hu Q, et al. Immune changes in peripheral blood and hematoma of patients with intracerebral hemorrhage [J]. FASEB J, 2020, 34(2): 2774-2791.
|
17 |
Yong VW. Metalloproteinases: mediators of pathology and regeneration in the CNS [J]. Nat Rev Neurosci, 2005, 6(12): 931-944.
|
18 |
Lattanzi S, Di Napoli M, Ricci S, et al. Matrix metalloproteinases in acute intracerebral hemorrhage [J]. Neurotherapeutics, 2020, 17(2): 484-496.
|
19 |
Zhang ZL, Liu YG, Huang QB, et al. Nuclear factor-κB activation in perihematomal brain tissue correlates with outcome in patients with intracerebral hemorrhage [J]. J Neuroinflammation, 2015, 12(1): 1-7.
|
20 |
Rodríguez-Yáñez M, Brea D, Arias S, et al. Increased expression of Toll-like receptors 2 and 4 is associated with poor outcome in intracerebral hemorrhage [J]. J Neuroimmunol, 2012, 247(1-2): 75-80.
|
21 |
Liddelow S, Barres B. Snapshot: astrocytes in health and disease [J]. Cell, 2015, 162(5): 1170-1170. e1.
|
22 |
Scimemi A. Astrocytes and the warning signs of intracerebral hemorrhagic stroke [J]. Neural Plast, 2018, 2018: 7301623.
|
23 |
Jha MK, Lee WH, Suk K. Functional polarization of neuroglia: implications in neuroinflammation and neurological disorders [J]. Biochem Pharmacol, 2016, 103: 1-16.
|
24 |
Jha MK, Jo M, Kim JH, et al. Microglia-astrocyte crosstalk: an intimate molecular conversation [J]. Neuroscientist, 2019, 25(3): 227-240.
|
25 |
Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia [J]. Nature, 2017, 541(7638): 481-487.
|
26 |
Lively S, Schlichter LC. Age-related comparisons of evolution of the inflammatory response after intracerebral hemorrhage in rats [J]. Transl Stroke Res, 2012, 3(1): 132-146.
|
27 |
Tejima E, Zhao BQ, Tsuji K, et al. Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage [J]. J Cereb Blood Flow Metab, 2007, 27(3): 460-468.
|
28 |
Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage [J]. Brain, 2005, 128(7): 1622-1633.
|
29 |
Shavit E, Michaelson DM, Chapman J. Anatomical localization of protease‐activated receptor‐1 and protease‐mediated neuroglilal crosstalk on peri‐synaptic astrocytic endfeet [J]. J Neurochem, 2011, 119(3): 460-473.
|
30 |
Sweeney AM, Fleming KE, Mccauley JP, et al. PAR1 activation induces rapid changes in glutamate uptake and astrocyte morphology [J]. Sci Rep, 2017, 7: 43606.
|
31 |
Chiu CD, Yao NW, Guo JH, et al. Inhibition of astrocytic activity alleviates sequela in acute stages of intracerebral hemorrhage [J]. Oncotarget, 2017, 8(55): 94850.
|
32 |
Yoshimura A, Sakaguchi R, Suzuki M, et al. Post-ischemic inflammation in the brain [J]. Front Immunol, 2012, 3: 132.
|
33 |
Hendrix S, Nitsch R. The role of T helper cells in neuroprotection and regeneration [J]. J Neuroimmunol, 2007, 184(1-2): 100-112.
|
34 |
Yilmaz G, Arumugam TV, Stokes KY, et al. Role of T lymphocytes and interferon-in ischemic stroke [J]. Circulation, 2006, 113(17): 2105-2112.
|
35 |
Hum PD, Subramanian S, Parker SM, et al. T-and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation [J]. J Cereb Blood Flow Metab, 2007, 27(11): 1798-1805.
|
36 |
Xue M, Del Bigio MR. Comparison of brain cell death and inflammatory reaction in three models of intracerebral hemorrhage in adult rats [J]. J Stroke Cerebrovasc Dis, 2003, 12(3): 152-159.
|
37 |
Loftspring MC, Mcdole J, Lu A, et al. Intracerebral hemorrhage leads to infiltration of several leukocyte populations with concomitant pathophysiological changes [J]. J Cereb Blood Flow Metab, 2009, 29(1): 137-143.
|
38 |
Guo F, Li X, Chen L, et al. Study of relationship between inflammatory response and apoptosis in perihematoma region in patients with intracerebral hemorrhage [J]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2006, 18(5): 290-293.
|
39 |
Arumugam TV, Granger DN, Mattson MP. Stroke and T-cells [J]. Neuromolecular Med, 2005, 7(3): 229-242.
|
40 |
Mackenzie JM, Clayton JA. Early cellular events in the penumbra of human spontaneous intracerebral hemorrhage [J]. J Stroke Cerebrovasc Dis, 1999, 8(1): 1-8.
|
41 |
Kayhanian S, Weerasuriya C, Rai U, et al. Prognostic value of peripheral leukocyte counts and plasma glucose in intracerebral haemorrhage [J]. J Clin Neurosci, 2017, 41: 50-53.
|
42 |
Faissner S, Mahjoub Y, Mishra M, et al. Unexpected additive effects of minocycline and hydroxychloroquine in models of multiple sclerosis: Prospective combination treatment for progressive disease? [J]. Mult Scler, 2018, 24(12): 1543-1556.
|
43 |
Sheng Z, Liu Y, Li H, et al. Efficacy of minocycline in acute ischemic stroke: a systematic review and meta-analysis of rodent and clinical studies [J]. Front Neurol, 2018, 9: 1103.
|
44 |
Yrjänheikki J, Keinänen R, Pellikka M, et al. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia [J]. Proc Natl Acad Sci, 1998, 95(26): 15769-15774.
|
45 |
Yong VW, Wells J, Giuliani F, et al. The promise of minocycline in neurology [J]. Lancet Neurol, 2004, 3(12): 744-751.
|
46 |
Naderi Y, Panahi Y, Barreto GE, et al. Neuroprotective effects of minocycline on focal cerebral ischemia injury: a systematic review [J]. Neural Regen Res, 2020, 15(5): 773.
|
47 |
Kobayashi K, Imagama S, Ohgomori T, et al. Minocycline selectively inhibits M1 polarization of microglia [J]. Cell Death Dis, 2013, 4(3): e525-e525.
|
48 |
Power C, Henry S, Del Bigio MR, et al. Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases [J]. Ann Neurol, 2003, 53(6): 731-742.
|
49 |
Xue M, Mikliaeva EI, Casha S, et al. Improving outcomes of neuroprotection by minocycline: guides from cell culture and intracerebral hemorrhage in mice [J]. Am J Pathol, 2010, 176(3): 1193-1202.
|
50 |
Xu L, Fagan SC, Waller JL, et al. Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats [J]. BMC Neurol, 2004, 4(1): 1-7.
|
51 |
Fouda AY, Newsome AS, Spellicy S, et al. Minocycline in acute cerebral hemorrhage: an early phase randomized trial [J]. Stroke, 2017, 48(10): 2885-2887.
|
52 |
Chang J, Kim‐Tenser M, Emanuel B, et al. Minocycline and matrix metalloproteinase inhibition in acute intracerebral hemorrhage: a pilot study [J]. Eur J Neurol, 2017, 24(11): 1384-1391.
|
53 |
Cohen JA, Chun J. Mechanisms of fingolimod's efficacy and adverse effects in multiple sclerosis [J]. Ann Neurol, 2011, 69(5): 759-777.
|
54 |
Kappos L, Radue EW, O'connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis [J]. N Engl J Med, 2010, 362(5): 387-401.
|
55 |
Chiba K. FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors [J]. Pharmacol Ther, 2005, 108(3): 308-319.
|
56 |
Lee CW, Choi JW, Chun J. Neurological S1P signaling as an emerging mechanism of action of oral FTY720 (fingolimod) in multiple sclerosis [J]. Arch Pharm Res, 2010, 33(10): 1567-1574.
|
57 |
Qin C, Fan WH, Liu Q, et al. Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway [J]. Stroke, 2017, 48(12): 3336-3346.
|
58 |
Das A, Arifuzzaman S, Kim SH, et al. FTY720 (fingolimod) regulates key target genes essential for inflammation in microglial cells as defined by high-resolution mRNA sequencing [J]. Neuropharmacology, 2017, 119: 1-14.
|
59 |
Lu L, Barfejani AH, Qin T, et al. Fingolimod exerts neuroprotective effects in a mouse model of intracerebral hemorrhage [J]. Brain Res, 2014, 1555: 89-96.
|
60 |
Rolland WB, Lekic T, Krafft PR, et al. Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage [J]. Exp Neurol, 2013, 241: 45-55.
|
61 |
Fu Y, Hao J, Zhang N, et al. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study [J]. JAMA Neurol, 2014, 71(9): 1092-1101.
|
62 |
Arefieva T, Filatova AY, Potekhina A, et al. Immunotropic effects and proposed mechanism of action for 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors (statins) [J]. Biochemistry (Mosc), 2018, 83(8): 874-889.
|
63 |
Ewen T, Qiuting L, Chaogang T, et al. Neuroprotective effect of atorvastatin involves suppression of TNF-α and upregulation of IL-10 in a rat model of intracerebral hemorrhage [J]. Cell Biochem Biophys, 2013, 66(2): 337-346.
|
64 |
Tapia-Perez H, Sanchez-Aguilar M, Torres-Corzo J, et al. Use of statins for the treatment of spontaneous intracerebral hemorrhage: results of a pilot study [J]. J Neurol Surg A Cent Eur Neurosurg, 2009, 70(1): 15-20.
|