1 |
Bayliss WM. On the local reactions of the arterial wall to changes of internal pressure [J]. J Physiol, 1902, 28(3): 220-231.
|
2 |
Knot HJ, Nelson MT. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure [J]. J Physiol, 1998, 508 (Pt 1): 199-209.
|
3 |
Schubert R, Mulvany MJ. The myogenic response: established facts and attractive hypotheses [J]. Clin Sci (Lond), 1999, 96(4): 313-326.
|
4 |
Hyder F, Shulman RG, Rothman DL. A model for the regulation of cerebral oxygen delivery [J]. J Appl Physiol (1985), 1998, 85(2): 554-564.
|
5 |
Yoshihara M, Bandoh K, Marmarou A. Cerebrovascular carbon dioxide reactivity assessed by intracranial pressure dynamics in severely head injured patients [J]. J Neurosurg, 1995, 82(3): 386-393.
|
6 |
Meno JR, Ngai AC, Winn HR. Changes in pial arteriolar diameter and CSF adenosine concentrations during hypoxia [J]. J Cereb Blood Flow Metab, 1993, 13(2): 214-220.
|
7 |
Wahl M, Kuschinsky W. The dilatatory action of adenosine on pial arteries of cats and its inhibition by theophylline [J]. Pflugers Arch, 1976, 362(1): 55-59.
|
8 |
Gordon GR, Choi HB, Rungta RL, et al. Brain metabolism dictates the polarity of astrocyte control over arterioles [J]. Nature, 2008, 456(7223): 745-749.
|
9 |
Miekisiak G, Kulik T, Kusano Y, et al. Cerebral blood flow response in adenosine 2a receptor knockout mice during transient hypoxic hypoxia [J]. J Cereb Blood Flow Metab, 2008, 28(10): 1656-1664.
|
10 |
Zhang R, Zuckerman JH, Iwasaki K, et al. Autonomic neural control of dynamic cerebral autoregulation in humans [J]. Circulation, 2002, 106(14): 1814-1820.
|
11 |
Hamner JW, Tan CO, Lee K, et al. Sympathetic control of the cerebral vasculature in humans [J]. Stroke, 2010, 41(1): 102-109.
|
12 |
Hamner JW, Tan CO, Tzeng YC, et al. Cholinergic control of the cerebral vasculature in humans [J]. J Physiol, 2012, 590(24): 6343-6352.
|
13 |
Panerai RB. Nonstationarity of dynamic cerebral autoregulation [J]. Med Eng Phys, 2014, 36(5): 576-584.
|
14 |
Hamel E. Perivascular nerves and the regulation of cerebrovascular tone [J]. J Appl Physiol (1985), 2006, 100(3): 1059-1064.
|
15 |
Crobeddu E, Pilloni G, Tardivo V, et al. Role of nitric oxide and mechanisms involved in cerebral injury after subarachnoid hemorrhage: is nitric oxide a possible answer to cerebral vasospasm? [J]. J Neurosurg Sci, 2016, 60(3): 385-391.
|
16 |
Guo ZN, Shao A, Tong LS, et al. The role of nitric oxide and sympathetic control in cerebral autoregulation in the setting of subarachnoid hemorrhage and traumatic brain injury [J]. Mol Neurobiol, 2016, 53(6): 3606-3615.
|
17 |
Xiong L, Liu X, Shang T, et al. Impaired cerebral autoregulation: measurement and application to stroke [J]. J Neurol Neurosurg Psychiatry, 2017, 88(6): 520-531.
|
18 |
JAHR Claassen, Meel-Van Den Abeelen ASS, Simpson DM, et al. Transfer function analysis of dynamic cerebral autoregulation: a white paper from the International Cerebral Autoregulation Research Network [J]. J Cereb Blood Flow Metab, 2016, 36(4): 665-680.
|
19 |
Novak V, Yang AC, Lepicovsky L, et al. Multimodal pressure-flow method to assess dynamics of cerebral autoregulation in stroke and hypertension [J]. Biomed Eng Online, 2004, 3(1): 39.
|
20 |
Tian FH, Tarumi T, Liu HL, et al. Wavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic-ischemic encephalopathy [J]. Neuroimage Clin, 2016, 11: 124-132.
|
21 |
Mitsis GD, Marmarelis VZ. Modeling of nonlinear physiological systems with fast and slow dynamics. I. Methodology [J]. Ann Biomed Eng, 2002, 30(2): 272-281.
|
22 |
Liu J, Simpson DM, Kouchakpour H, et al. Rapid pressure-to-flow dynamics of cerebral autoregulation induced by instantaneous changes of arterial CO2 [J]. Med Eng Phys, 2014, 36(12): 1636-1643.
|
23 |
Panerai RB, Jara JL, Saeed NP, et al. Dynamic cerebral autoregulation following acute ischaemic stroke: comparison of transcranial Doppler and magnetic resonance imaging techniques [J]. J Cereb Blood Flow Metab, 2016, 36(12): 2194-2202.
|
24 |
Tiecks FP, Lam AM, Aaslid R, et al. Comparison of static and dynamic cerebral autoregulation measurements [J]. Stroke, 1995, 26(6): 1014-1019.
|
25 |
Panerai RB, Eames PJ, Potter JF. Variability of time-domain indices of dynamic cerebral autoregulation [J]. Physiol Meas, 2003, 24(2): 367-381.
|
26 |
Zhang R, Zuckerman JH, Giller CA, et al. Transfer function analysis of dynamic cerebral autoregulation in humans [J]. Am J Physiol, 1998, 274(1 Pt 2): H233-H241.
|
27 |
Claassen JA, Meel-Van Den Abeelen AS, Simpson DM, et al. Transfer function analysis of dynamic cerebral autoregulation: a white paper from the International Cerebral Autoregulation Research Network [J]. J Cereb Blood Flow Metab, 2016, 36(4): 665-680.
|
28 |
Meel-Van Den Abeelen AS, Van Beek AH, Slump CH, et al. Transfer function analysis for the assessment of cerebral autoregulation using spontaneous oscillations in blood pressure and cerebral blood flow [J]. Med Eng Phys, 2014, 36(5): 563-575.
|
29 |
Meel-Van Den Abeelen AS, Simpson DM, Wang LJ, et al. Between-centre variability in transfer function analysis, a widely used method for linear quantification of the dynamic pressure-flow relation: the CARNet study [J]. Med Eng Phys, 2014, 36(5): 620-627.
|
30 |
Liu J, Guo ZN, Simpson DM, et al. A data-driven approach to transfer function analysis for superior discriminative power: optimized assessment of dynamic cerebral autoregulation [J]. IEEE J Biomed Health Inform, 2021, 25(4): 909-921.
|
31 |
Czosnyka M, Smielewski P, Kirkpatrick P, et al. Monitoring of cerebral autoregulation in head-injured patients [J]. Stroke, 1996, 27(10): 1829-1834.
|
32 |
Liu Y, Birch AA, Allen R. Dynamic cerebral autoregulation assessment using an ARX model: comparative study using step response and phase shift analysis [J]. Med Eng Phys, 2003, 25(8): 647-653.
|
33 |
Guo ZN, Xing Y, Wang S, et al. Characteristics of dynamic cerebral autoregulation in cerebral small vessel disease: diffuse and sustained [J]. Sci Rep, 2015, 5: 15269.
|
34 |
Meschia JF, Bushnell C, Boden-Albala B, et al. Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association [J]. Stroke, 2014, 45(12): 3754-3832.
|
35 |
Willmot M, Leonardi-Bee J, Bath PM. High blood pressure in acute stroke and subsequent outcome: a systematic review [J]. Hypertension, 2004, 43(1): 18-24.
|
36 |
Bath P, Chalmers J, Powers W, et al. International Society of Hypertension (ISH): statement on the management of blood pressure in acute stroke [J]. J Hypertens, 2003, 21(4): 665-672.
|
37 |
Dawson SL, Blake MJ, Panerai RB, et al. Dynamic but not static cerebral autoregulation is impaired in acute ischaemic stroke [J]. Cerebrovasc Dis, 2000, 10(2): 126-132.
|
38 |
Eames PJ, Blake MJ, Dawson SL, et al. Dynamic cerebral autoregulation and beat to beat blood pressure control are impaired in acute ischaemic stroke [J]. J Neurol Neurosurg Psychiatry, 2002, 72(4): 467-472.
|
39 |
Saeed NP, Panerai RB, Horsfield MA, et al. Does stroke subtype and measurement technique influence estimation of cerebral autoregulation in acute ischaemic stroke? [J]. Cerebrovasc Dis, 2013, 35(3): 257-261.
|
40 |
Xiong L, Tian G, Lin W, et al. Is dynamic cerebral autoregulation bilaterally impaired after unilateral acute ischemic stroke? [J]. J Stroke Cerebrovasc Dis, 2017, 26(5): 1081-1087.
|
41 |
Immink RV, Van Montfrans GA, Stam J, et al. Dynamic cerebral autoregulation in acute lacunar and middle cerebral artery territory ischemic stroke [J]. Stroke, 2005, 36(12): 2595-2600.
|
42 |
Guo ZN, Liu J, Xing Y, et al. Dynamic cerebral autoregulation is heterogeneous in different subtypes of acute ischemic stroke [J]. PLoS One, 2014, 9(3): e93213.
|
43 |
Dawson SL, Panerai RB, Potter JF. Serial changes in static and dynamic cerebral autoregulation after acute ischaemic stroke [J]. Cerebrovasc Dis, 2003, 16(1): 69-75.
|
44 |
Guo ZN, Sun X, Liu J, et al. The impact of variational primary collaterals on cerebral autoregulation [J]. Front Physiol, 2018, 9: 759.
|
45 |
Kwan J, Lunt M, Jenkinson D. Assessing dynamic cerebral autoregulation after stroke using a novel technique of combining transcranial Doppler ultrasonography and rhythmic handgrip [J]. Blood Press Monit, 2004, 9(1): 3-8.
|
46 |
Hu K, Peng CK, Czosnyka M, et al. Nonlinear assessment of cerebral autoregulation from spontaneous blood pressure and cerebral blood flow fluctuations [J]. Cardiovasc Eng, 2008, 8(1): 60-71.
|
47 |
Reinhard M, Roth M, Guschlbauer B, et al. Dynamic cerebral autoregulation in acute ischemic stroke assessed from spontaneous blood pressure fluctuations [J]. Stroke, 2005, 36(8): 1684-1689.
|
48 |
Petersen NH, Ortega-Gutierrez S, Reccius A, et al. Dynamic cerebral autoregulation is transiently impaired for one week after large-vessel acute ischemic stroke [J]. Cerebrovasc Dis, 2015, 39(2): 144-150.
|
49 |
Ma H, Guo ZN, Jin H, et al. Preliminary study of dynamic cerebral autoregulation in acute ischemic stroke: association with clinical factors [J]. Front Neurol, 2018, 9: 1006.
|
50 |
Castro P, Azevedo E, Serrador J, et al. Hemorrhagic transformation and cerebral edema in acute ischemic stroke: link to cerebral autoregulation [J]. J Neurol Sci, 2017, 372: 256-261.
|
51 |
Reinhard M, Rutsch S, Lambeck J, et al. Dynamic cerebral autoregulation associates with infarct size and outcome after ischemic stroke [J]. Acta Neurol Scand, 2012, 125(3): 156-162.
|
52 |
Salinet AS, Silva NC, Caldas J, et al. Impaired cerebral autoregulation and neurovascular coupling in middle cerebral artery stroke: Influence of severity? [J]. J Cereb Blood Flow Metab, 2019, 39(11): 2277-2285.
|
53 |
Chi NF, Hu HH, Wang CY, et al. Dynamic cerebral autoregulation is an independent functional outcome predictor of mild acute ischemic stroke [J]. Stroke, 2018, 49(11): 2605-2611.
|
54 |
Reinhard M, Wihler C, Roth M, et al. Cerebral autoregulation dynamics in acute ischemic stroke after rtPA thrombolysis [J]. Cerebrovasc Dis, 2008, 26(2): 147-155.
|
55 |
Tian G, Ji Z, Huang K, et al. Dynamic cerebral autoregulation is an independent outcome predictor of acute ischemic stroke after endovascular therapy [J]. BMC Neurol, 2020, 20(1): 189.
|
56 |
张哲濮, 于蕾, 段婉莹, 等. 急性前循环缺血性卒中血管内治疗术后早期脑血流自动调节功能与预后关系研究 [J]. 中国卒中杂志, 2020, 15(12): 1299-1305.
|
57 |
Qureshi AI, Tuhrim S, Broderick JP, et al. Spontaneous intracerebral hemorrhage [J]. N Engl J Med, 2001, 344(19): 1450-1460.
|
58 |
Castro P, Azevedo E, Sorond F. Cerebral autoregulation in stroke [J]. Curr Atheroscler Rep, 2018, 20(8): 37.
|
59 |
Diedler J, Sykora M, Rupp A, et al. Impaired cerebral vasomotor activity in spontaneous intracerebral hemorrhage [J]. Stroke, 2009, 40(3): 815-819.
|
60 |
Reinhard M, Neunhoeffer F, Gerds TA, et al. Secondary decline of cerebral autoregulation is associated with worse outcome after intracerebral hemorrhage [J]. Intensive Care Med, 2010, 36(2): 264-271.
|
61 |
Nakagawa K, Serrador JM, Larose SL, et al. Dynamic cerebral autoregulation after intracerebral hemorrhage: a case-control study [J]. BMC Neurol, 2011, 11: 108.
|
62 |
Oeinck M, Neunhoeffer F, Buttler KJ, et al. Dynamic cerebral autoregulation in acute intracerebral hemorrhage [J]. Stroke, 2013, 44(10): 2722-2728.
|
63 |
Ma H, Guo ZN, Liu J, et al. Temporal course of dynamic cerebral autoregulation in patients with intracerebral hemorrhage [J]. Stroke, 2016, 47(3): 674-681.
|
64 |
Ma H, Guo ZN, Sun X, et al. Hematoma volume is a predictive factor of disturbed autoregulation after spontaneous intracerebral hemorrhage [J]. J Neurol Sci, 2017, 382: 96-100.
|
65 |
Minhas JS, Panerai RB, Swienton D, et al. Feasibility of improving cerebral autoregulation in acute intracerebral hemorrhage (BREATHE-ICH) study: results from an experimental interventional study [J]. Int J Stroke, 2020, 15(6): 627-637.
|
66 |
Sudlow CL, Warlow CP. Comparable studies of the incidence of stroke and its pathological types: results from an international collaboration. International Stroke Incidence Collaboration [J]. Stroke, 1997, 28(3): 491-499.
|
67 |
Velthuis BK, Van Leeuwen MS, Witkamp TD, et al. CT angiography: source images and postprocessing techniques in the detection of cerebral aneurysms [J]. AJR Am J Roentgenol, 1997, 169(5): 1411-1417.
|
68 |
Takeuchi H, Handa Y, Kobayashi H, et al. Impairment of cerebral autoregulation during the development of chronic cerebral vasospasm after subarachnoid hemorrhage in primates [J]. Neurosurgery, 1991, 28(1): 41-48.
|
69 |
Rasmussen G, Hauerberg J, Waldemar G, et al. Cerebral blood flow autoregulation in experimental subarachnoid haemorrhage in rat [J]. Acta Neurochir (Wien), 1992, 119(1-4): 128-133.
|
70 |
Budohoski KP, Guilfoyle M, Helmy A, et al. The pathophysiology and treatment of delayed cerebral ischaemia following subarachnoid haemorrhage [J]. J Neurol Neurosurg Psychiatry, 2014, 85(12): 1343-1353.
|
71 |
Budohoski KP, Czosnyka M, Kirkpatrick PJ, et al. Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage [J]. Nat Rev Neurol, 2013, 9(3): 152-163.
|
72 |
Budohoski KP, Czosnyka M, Smielewski P, et al. Cerebral autoregulation after subarachnoid hemorrhage: comparison of three methods [J]. J Cereb Blood Flow Metab, 2013, 33(3): 449-456.
|
73 |
Rätsep T, Eelmäe J, Asser T. Routine utilization of the transient hyperaemic response test after aneurysmal subarachnoid haemorrhage [J]. Acta Neurochir Suppl, 2002, 81: 121-124.
|
74 |
Otite F, Mink S, Tan CO, et al. Impaired cerebral autoregulation is associated with vasospasm and delayed cerebral ischemia in subarachnoid hemorrhage [J]. Stroke, 2014, 45(3): 677-682.
|
75 |
Lang EW, Diehl RR, Mehdorn HM. Cerebral autoregulation testing after aneurysmal subarachnoid hemorrhage: the phase relationship between arterial blood pressure and cerebral blood flow velocity [J]. Crit Care Med, 2001, 29(1): 158-163.
|
76 |
Soehle M, Czosnyka M, Pickard JD, et al. Continuous assessment of cerebral autoregulation in subarachnoid hemorrhage [J]. Anesth Analg, 2004, 98(4): 1133-1139, table of contents.
|
77 |
Jaeger M, Schuhmann MU, Soehle M, et al. Continuous monitoring of cerebrovascular autoregulation after subarachnoid hemorrhage by brain tissue oxygen pressure reactivity and its relation to delayed cerebral infarction [J]. Stroke, 2007, 38(3): 981-986.
|
78 |
Calviere L, Nasr N, Arnaud C, et al. Prediction of delayed cerebral ischemia after subarachnoid hemorrhage using cerebral blood flow velocities and cerebral autoregulation assessment [J]. Neurocrit Care, 2015, 23(2): 253-258.
|
79 |
Fontana J, Moratin J, Ehrlich G, et al. Dynamic autoregulatory response after aneurysmal subarachnoid hemorrhage and its relation to angiographic vasospasm and clinical outcome [J]. Neurocrit Care, 2015, 23(3): 355-363.
|
80 |
Fontana J, Wenz H, Schmieder K, et al. Impairment of dynamic pressure autoregulation precedes clinical deterioration after aneurysmal subarachnoid hemorrhage [J]. J Neuroimaging, 2016, 26(3): 339-345.
|
81 |
Ortega-Gutierrez S, Samaniego EA, Reccius A, et al. Changes on dynamic cerebral autoregulation are associated with delayed cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage [J]. Acta Neurochir Suppl, 2020, 127: 149-153.
|
82 |
Shen J, Xu G, Zhu R, et al. PDGFR-beta restores blood-brain barrier functions in a mouse model of focal cerebral ischemia [J]. J Cereb Blood Flow Metab, 2018: 271678X18769515.
|
83 |
Gaasch M, Schiefecker AJ, Kofler M, et al. Cerebral autoregulation in the prediction of delayed cerebral ischemia and clinical outcome in poor-grade aneurysmal subarachnoid hemorrhage patients [J]. Crit Care Med, 2018, 46(5): 774-780.
|
84 |
Budohoski KP, Czosnyka M, Kirkpatrick PJ, et al. Bilateral failure of cerebral autoregulation is related to unfavorable outcome after subarachnoid hemorrhage [J]. Neurocrit Care, 2015, 22(1): 65-73.
|
85 |
Santos GA, Petersen N, Zamani AA, et al. Pathophysiologic differences in cerebral autoregulation after subarachnoid hemorrhage [J]. Neurology, 2016, 86(21): 1950-1956.
|
86 |
Jaeger M, Soehle M, Schuhmann MU, et al. Clinical significance of impaired cerebrovascular autoregulation after severe aneurysmal subarachnoid hemorrhage [J]. Stroke, 2012, 43(8): 2097-2101.
|
87 |
Rivera-Lara L, Zorrilla-Vaca A, Geocadin R, et al. Predictors of outcome with cerebral autoregulation monitoring: a systematic review and meta-analysis [J]. Crit Care Med, 2017, 45(4): 695-704.
|
88 |
Tseng MY, Czosnyka M, Richards H, et al. Effects of acute treatment with pravastatin on cerebral vasospasm, autoregulation, and delayed ischemic deficits after aneurysmal subarachnoid hemorrhage: a phase II randomized placebo-controlled trial [J]. Stroke, 2005, 36(8): 1627-1632.
|
89 |
Tseng MY, Hutchinson PJ, Czosnyka M, et al. Effects of acute pravastatin treatment on intensity of rescue therapy, length of inpatient stay, and 6-month outcome in patients after aneurysmal subarachnoid hemorrhage [J]. Stroke, 2007, 38(5): 1545-1550.
|
90 |
Tseng MY, Hutchinson PJ, Richards HK, et al. Acute systemic erythropoietin therapy to reduce delayed ischemic deficits following aneurysmal subarachnoid hemorrhage: a Phase II randomized, double-blind, placebo-controlled trial. Clinical article [J]. J Neurosurg, 2009, 111(1): 171-180.
|
91 |
Coles JP, Fryer TD, Smielewski P, et al. Incidence and mechanisms of cerebral ischemia in early clinical head injury [J]. J Cereb Blood Flow Metab, 2004, 24(2): 202-211.
|
92 |
Rangel-Castilla L, Gasco J, Nauta HJ, et al. Cerebral pressure autoregulation in traumatic brain injury [J]. Neurosurg Focus, 2008, 25(4): E7.
|
93 |
Jaeger M, Schuhmann MU, Soehle M, et al. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity [J]. Crit Care Med, 2006, 34(6): 1783-1788.
|
94 |
Hlatky R, Valadka AB, Robertson CS. Intracranial pressure response to induced hypertension: role of dynamic pressure autoregulation [J]. Neurosurgery, 2005, 57(5): 917-923; discussion 917-923.
|
95 |
Hlatky R, Furuya Y, Valadka AB, et al. Dynamic autoregulatory response after severe head injury [J]. J Neurosurg, 2002, 97(5): 1054-1061.
|
96 |
Junger EC, Newell DW, Grant GA, et al. Cerebral autoregulation following minor head injury [J]. J Neurosurg, 1997, 86(3): 425-432.
|
97 |
Lang EW, Mehdorn HM, Dorsch NW, et al. Continuous monitoring of cerebrovascular autoregulation: a validation study [J]. J Neurol Neurosurg Psychiatry, 2002, 72(5): 583-586.
|
98 |
Sviri GE, Aaslid R, Douville CM, et al. Time course for autoregulation recovery following severe traumatic brain injury [J]. J Neurosurg, 2009, 111(4): 695-700.
|
99 |
Preiksaitis A, Krakauskaite S, Petkus V, et al. Association of severe traumatic brain injury patient outcomes with duration of cerebrovascular autoregulation impairment events [J]. Neurosurgery, 2016, 79(1): 75-82.
|
100 |
Ding K, Tarumi T, Tomoto T, et al. Impaired cerebral blood flow regulation in chronic traumatic brain injury [J]. Brain Res, 2020, 1743: 146924.
|
101 |
Czosnyka M, Miller C, Participants in the international multidisciplinary consensus conference on multimodality Monitoring. Monitoring of cerebral autoregulation [J]. Neurocrit Care, 2014, 21 Suppl 2: S95-S102.
|
102 |
Klein SP, Depreitere B. What determines outcome in patients that suffer raised intracranial pressure after traumatic brain injury? [J]. Acta Neurochir Suppl, 2018, 126: 51-54.
|
103 |
Howells T, Elf K, Jones PA, et al. Pressure reactivity as a guide in the treatment of cerebral perfusion pressure in patients with brain trauma [J]. J Neurosurg, 2005, 102(2): 311-317.
|
104 |
Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, et al. Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds [J]. J Neurotrauma, 2007, 24 Suppl 1: S59-S64.
|
105 |
Le Roux P, Menon DK, Citerio G, et al. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine [J]. Intensive Care Med, 2014, 40(9): 1189-1209.
|
106 |
Suter OC, Sunthorn T, Kraftsik R, et al. Cerebral hypoperfusion generates cortical watershed microinfarcts in Alzheimer disease [J]. Stroke, 2002, 33(8): 1986-1992.
|
107 |
Niwa K, Kazama K, Younkin L, et al. Cerebrovascular autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein [J]. Am J Physiol Heart Circ Physiol, 2002, 283(1): H315-H323.
|
108 |
Gommer ED, Martens EG, Aalten P, et al. Dynamic cerebral autoregulation in subjects with Alzheimer's disease, mild cognitive impairment, and controls: evidence for increased peripheral vascular resistance with possible predictive value [J]. J Alzheimers Dis, 2012, 30(4): 805-813.
|
109 |
Zazulia AR, Videen TO, Morris JC, et al. Autoregulation of cerebral blood flow to changes in arterial pressure in mild Alzheimer's disease [J]. J Cereb Blood Flow Metab, 2010, 30(11): 1883-1889.
|
110 |
Claassen JA, Diaz-Arrastia R, Martin-Cook K, et al. Altered cerebral hemodynamics in early Alzheimer disease: a pilot study using transcranial Doppler [J]. J Alzheimers Dis, 2009, 17(3): 621-629.
|
111 |
Den Abeelen AS, Lagro J, Van Beek AH, et al. Impaired cerebral autoregulation and vasomotor reactivity in sporadic Alzheimer's disease [J]. Curr Alzheimer Res, 2014, 11(1): 11-17.
|
112 |
De Heus RAA, De Jong DLK, Sanders ML, et al. Dynamic regulation of cerebral blood flow in patients with Alzheimer disease [J]. Hypertension, 2018, 72(1): 139-150.
|
113 |
Indelicato E, Fanciulli A, Poewe W, et al. Cerebral autoregulation and white matter lesions in Parkinson's disease and multiple system atrophy [J]. Parkinsonism Relat Disord, 2015, 21(12): 1393-1397.
|
114 |
Meyer JS, Shimazu K, Fukuuchi Y, et al. Cerebral dysautoregulation in central neurogenic orthostatic hypotension (Shy-Drager syndrome) [J]. Neurology, 1973, 23(3): 262-273.
|
115 |
Vokatch N, Grotzsch H, Mermillod B, et al. Is cerebral autoregulation impaired in Parkinson's disease? A transcranial Doppler study [J]. J Neurol Sci, 2007, 254(1-2): 49-53.
|
116 |
Pavy-Le Traon A, Hughson RL, Thalamas C, et al. Cerebral autoregulation is preserved in multiple system atrophy: a transcranial Doppler study [J]. Mov Disord, 2006, 21(12): 2122-2126.
|
117 |
Perez-Pinar M, Ayerbe L, Gonzalez E, et al. Anxiety disorders and risk of stroke: a systematic review and meta-analysis [J]. Eur Psychiatry, 2017, 41: 102-108.
|
118 |
Zhang HL, Guo ZN, Yang G, et al. Compromised cerebrovascular modulation in chronic anxiety: evidence from cerebral blood flow velocity measured by transcranial Doppler sonography [J]. Neurosci Bull, 2012, 28(6): 723-728.
|
119 |
Guo ZN, Feng L, Yan X, et al. Characteristics of cardio-cerebrovascular modulation in patients with generalized anxiety disorder: an observational study [J]. BMC Psychiatry, 2017, 17(1): 259.
|
120 |
Guo ZN, Lv S, Liu J, et al. Compromised dynamic cerebral autoregulation in patients with generalized anxiety disorder: a study using transfer function analysis [J]. BMC Psychiatry, 2018, 18(1): 164.
|
121 |
Luo MY, Guo ZN, Qu Y, et al. Compromised dynamic cerebral autoregulation in patients with depression [J]. Front Psychiatry, 2019, 10: 373.
|
122 |
Ku HL, Wang JK, Lee HC, et al. Cerebral blood flow autoregulation is impaired in schizophrenia: a pilot study [J]. Schizophr Res, 2017, 188: 63-67.
|
123 |
Tsivgoulis G, Alexandrov AV. Cerebral autoregulation impairment during wakefulness in obstructive sleep apnea syndrome is a potential mechanism increasing stroke risk [J]. Eur J Neurol, 2009, 16(3): 283-284.
|
124 |
Urbano F, Roux F, Schindler J, et al. Impaired cerebral autoregulation in obstructive sleep apnea [J]. J Appl Physiol (1985), 2008, 105(6): 1852-1857.
|
125 |
Nasr N, Traon AP, Czosnyka M, et al. Cerebral autoregulation in patients with obstructive sleep apnea syndrome during wakefulness [J]. Eur J Neurol, 2009, 16(3): 386-391.
|
126 |
Waltz X, Beaudin AE, Hanly PJ, et al. Effects of continuous positive airway pressure and isocapnic-hypoxia on cerebral autoregulation in patients with obstructive sleep apnoea [J]. J Physiol, 2016, 594(23): 7089-7104.
|
127 |
吕珊, 郭珍妮, 孙晴晴, 等. 慢性失眠患者动态脑血流自动调节功能的研究 [J]. 中华神经科杂志, 2017, 50(8): 585-589.
|
128 |
Sakai F, Meyer JS, Karacan I, et al. Narcolepsy: regional cerebral blood flow during sleep and wakefulness [J]. Neurology, 1979, 29(1): 61-67.
|
129 |
Lv S, Wang Z, Sun X, et al. Compromised dynamic cerebral autoregulation in patients with idiopathic rapid eye movement behavior disorder: a case-control study using transcranial Doppler [J]. Front Psychiatry, 2020, 11: 51.
|
130 |
Guo ZN, Sun X, Zhao Y, et al. Temporal course of cerebral autoregulation in patients with narcolepsy type 1: two case reports [J]. Front Neurol, 2018, 9: 1155.
|
131 |
Kruit MC, Van Buchem MA, Hofman PA, et al. Migraine as a risk factor for subclinical brain lesions [J]. JAMA, 2004, 291(4): 427-434.
|
132 |
Kruit MC, Launer LJ, Ferrari MD, et al. Infarcts in the posterior circulation territory in migraine. The population-based MRI CAMERA study [J]. Brain, 2005, 128(Pt 9): 2068-2077.
|
133 |
Reinhard M, Schork J, Allignol A, et al. Cerebellar and cerebral autoregulation in migraine [J]. Stroke, 2012, 43(4): 987-993.
|
134 |
Guo ZN, Xing Y, Liu J, et al. Compromised dynamic cerebral autoregulation in patients with a right-to-left shunt: a potential mechanism of migraine and cryptogenic stroke [J]. PLoS One, 2014, 9(8): e104849.
|
135 |
Van Paesschen W, Dupont P, Van Driel G, et al. SPECT perfusion changes during complex partial seizures in patients with hippocampal sclerosis [J]. Brain, 2003, 126(Pt 5): 1103-1111.
|
136 |
Schwartz TH. Neurovascular coupling and epilepsy: hemodynamic markers for localizing and predicting seizure onset [J]. Epilepsy Curr, 2007, 7(4): 91-94.
|
137 |
Lv S, Guo ZN, Jin H, et al. Compromised dynamic cerebral autoregulation in patients with epilepsy [J]. Biomed Res Int, 2018, 2018: 6958476.
|
138 |
Chen SF, Jou SB, Chen NC, et al. Serum levels of brain-derived neurotrophic factor and insulin-like growth factor 1 are associated with autonomic dysfunction and impaired cerebral autoregulation in patients with epilepsy [J]. Front Neurol, 2018, 9: 969.
|
139 |
Dütsch M, Devinsky O, Doyle W, et al. Cerebral autoregulation improves in epilepsy patients after temporal lobe surgery [J]. J Neurol, 2004, 251(10): 1190-1197.
|
140 |
Rivera-Lara L, Zorrilla-Vaca A, Geocadin RG, et al. Cerebral autoregulation-oriented therapy at the bedside: a comprehensive review [J]. Anesthesiology, 2017, 126(6): 1187-1199.
|
141 |
Diedler J, Santos E, Poli S, et al. Optimal cerebral perfusion pressure in patients with intracerebral hemorrhage: an observational case series [J]. Crit Care, 2014, 18(2): R51.
|
142 |
Bijlenga P, Czosnyka M, Budohoski KP, et al. "Optimal cerebral perfusion pressure" in poor grade patients after subarachnoid hemorrhage [J]. Neurocrit Care, 2010, 13(1): 17-23.
|
143 |
Rasulo FA, Girardini A, Lavinio A, et al. Are optimal cerebral perfusion pressure and cerebrovascular autoregulation related to long-term outcome in patients with aneurysmal subarachnoid hemorrhage? [J]. J Neurosurg Anesthesiol, 2012, 24(1): 3-8.
|
144 |
Weigl W, Milej D, Janusek D, et al. Application of optical methods in the monitoring of traumatic brain injury: a review [J]. J Cereb Blood Flow Metab, 2016, 36(11): 1825-1843.
|
145 |
Steiner LA, Czosnyka M, Piechnik SK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury [J]. Crit Care Med, 2002, 30(4): 733-738.
|
146 |
Aries MJ, Czosnyka M, Budohoski KP, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury [J]. Crit Care Med, 2012, 40(8): 2456-2463.
|
147 |
Petkus V, Preiksaitis A, Chaleckas E, et al. Optimal cerebral perfusion pressure: targeted treatment for severe traumatic brain injury [J]. J Neurotrauma, 2020, 37(2): 389-396.
|
148 |
Sorond F, Tan C, Larose S, et al. Deferoxamine, cerebrovascular hemodynamics, and vascular aging: potential role for hypoxia-inducible transcription factor-1-regulated pathways [J]. Stroke, 2015, 46(9): 2576-2583.
|
149 |
Ogawa Y, Iwasaki K, Aoki K, et al. The different effects of midazolam and propofol sedation on dynamic cerebral autoregulation [J]. Anesth Analg, 2010, 111(5): 1279-1284.
|
150 |
Ogawa Y, Iwasaki K, Aoki K, et al. The effects of flumazenil after midazolam sedation on cerebral blood flow and dynamic cerebral autoregulation in healthy young males [J]. J Neurosurg Anesthesiol, 2015, 27(4): 275-281.
|
151 |
Tseng MY, Czosnyka M, Richards H, et al. Effects of acute treatment with statins on cerebral autoregulation in patients after aneurysmal subarachnoid hemorrhage [J]. Neurosurg Focus, 2006, 21(3): E10.
|
152 |
Annabi MS, Clisson M, Fleury MA, et al. Sex-differences in echocardiographic assessment of aortic valve in young adult LDLr(-/-)/ApoB(100/100)/IGF-II(+/-) mice [J]. Exp Gerontol, 2020, 140: 111075.
|
153 |
Maxwell JD, Carter HH, Hellsten Y, et al. Seven-day remote ischaemic preconditioning improves endothelial function in patients with type 2 diabetes mellitus: a randomised pilot study [J]. Eur J Endocrinol, 2019, 181(6): 659-669.
|
154 |
Guo ZN, Guo WT, Liu J, et al. Changes in cerebral autoregulation and blood biomarkers after remote ischemic preconditioning [J]. Neurology, 2019, 93(1): e8-e19.
|
155 |
Bonetti PO, Holmes DR, Lerman A, et al. Enhanced external counterpulsation for ischemic heart disease: what's behind the curtain? [J]. J Am Coll Cardiol, 2003, 41(11): 1918-1925.
|
156 |
Zhang Y, He X, Chen X, et al. Enhanced external counterpulsation inhibits intimal hyperplasia by modifying shear stress responsive gene expression in hypercholesterolemic pigs [J]. Circulation, 2007, 116(5): 526-534.
|
157 |
Buschmann EE, Brix M, Li L, et al. Adaptation of external counterpulsation based on individual shear rate therapy improves endothelial function and claudication distance in peripheral artery disease [J]. Vasa, 2016, 45(4): 317-324.
|
158 |
Zietzer A, Buschmann EE, Janke D, et al. Acute physical exercise and long-term individual shear rate therapy increase telomerase activity in human peripheral blood mononuclear cells [J]. Acta Physiol (Oxf), 2017, 220(2): 251-262.
|
159 |
Buschmann EE, Utz W, Pagonas N, et al. Improvement of fractional flow reserve and collateral flow by treatment with external counterpulsation (Art.Net.-2 Trial) [J]. Eur J Clin Invest, 2009, 39(10): 866-875.
|
160 |
Lin W, Xiong L, Han J, et al. External counterpulsation augments blood pressure and cerebral flow velocities in ischemic stroke patients with cerebral intracranial large artery occlusive disease [J]. Stroke, 2012, 43(11): 3007-3011.
|
161 |
Xiong L, Lin W, Han J, et al. Enhancing cerebral perfusion with external counterpulsation after ischaemic stroke: how long does it last? [J]. J Neurol Neurosurg Psychiatry, 2016, 87(5): 531-536.
|