切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (04) : 258 -262. doi: 10.11817/j.issn.1673-9248.2021.04.012

综述

血压变异性与脑白质高信号的研究进展
战晶晶1, 彭斌2,()   
  1. 1. 2664001 山东青岛,青岛西海岸新区人民医院神经内科
    2. 100730 中国医学科学院北京协和医院神经科
  • 收稿日期:2020-12-28 出版日期:2021-08-09
  • 通信作者: 彭斌
  • 基金资助:
    国家重点研发计划精准医学研究重点专项子课题(2016YFC0901004)

Advances in the relationship between blood pressure variability and white matter hyperintensity

JingJing Zhan1, Bin Peng2,()   

  1. 1. Department of Neurology, Qingdao West Coast New District People's Hospital, Qingdao 266400, China
    2. Department of Neurology, Peking Union Medical College Hospital, Beijing 100730, China
  • Received:2020-12-28 Published:2021-08-09
  • Corresponding author: Bin Peng
引用本文:

战晶晶, 彭斌. 血压变异性与脑白质高信号的研究进展[J]. 中华脑血管病杂志(电子版), 2021, 15(04): 258-262.

JingJing Zhan, Bin Peng. Advances in the relationship between blood pressure variability and white matter hyperintensity[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2021, 15(04): 258-262.

血压变异性是指在各种病理、生理因素的影响下血压波动的程度。血管源性脑白质高信号(WMH)是指位于脑白质,病变范围大小不等的异常信号。高血压是WMH的主要危险因素之一,高血压患者更容易出现血压变异性增大,目前不少研究关注WMH与血压变异性的关系。本文对相关研究进行综述,从病理机制方面解释了高血压、血压变异性与WMH的内在关系,总结了不同的监测方式及降压药物对WMH发生发展的影响,以期建立合适的预测模型评估预后,并为早期干预WMH提供适当的降压策略。

Blood pressure variability (BPV) refers to the degree of pressure fluctuations in the influence of various pathological and physiological factors. White matter hyperintensity (WMH) is an abnormal signal located in the white matter of the brain with varying lesion range. Hypertension is one of the main risk factors for WMH. Patients with hypertension are more likely to have increased blood pressure variability. At present, many studies focus on the relationship between WMH and blood pressure variability. This paper summarizes the related researches, explains the internal relationship between hypertension, BPV and WMH from the pathological mechanism, and the influence of different monitoring methods and antihypertensive medication on the occurrence and development of WMH, as to establish an appropriate prediction model to evaluate the prognosis and provide appropriate antihypertensive strategies for early intervention of WMH.

1
Hachinski VC, Potter P, Merskey H. Leuko-araiosis: an ancient term for a new problem [J]. Can J Neurol Sci, 1986, 13(4 Suppl): 533‐534.
2
de Leeuw FE, de Groot JC, Achten E, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study [J]. J Neurol Neurosurg Psychiatry, 2001, 70(1): 9‐14.
3
Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis [J]. BMJ, 2010, 341: c3666.
4
Pinter D, Ritchie SJ, Doubal F, et al. Impact of small vessel disease in the brain on gait and balance [J]. Sci Rep, 2017, 7: 41637.
5
Fandler S, Gattringer T, Eppinger S, et al. Frequency and Predictors of Dysphagia in Patients With Recent Small Subcortical Infarcts [J]. Stroke, 2017, 48(1): 213‐215.
6
Rothwell PM, Howard SC, Dolan E, et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension [J]. Lancet, 2010, 375(9718): 895‐905.
7
Sabayan B, Wijsman LW, Foster-Dingley JC, et al. Association of visit-to-visit variability in blood pressure with cognitive function in old age: prospective cohort study [J]. BMJ, 2013, 347: f4600.
8
Yamaguchi Y, Wada M, Sato H, et al. Impact of ambulatory blood pressure variability on cerebral small vessel disease progression and cognitive decline in community-based elderly Japanese [J]. Am J Hypertens, 2014, 27(10): 1257-1267.
9
Longstreth WT, Manolio TA, Arnold A, et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people The Cardiovascular Health Study [J]. Stroke, 1996, 27(8): 1274-1282.
10
Carmelli D, DeCarli C, Swan GE, et al. Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins [J]. Stroke, 1998, 29(6): 1177‐1181.
11
Fornage M, Debette S, Bis JC, et al. Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium [J]. Ann Neurol, 2011, 69(6): 928‐939.
12
Auriel E, Bornstein NM, Berenyi E, et al. Clinical, radiological and pathological correlates of leukoaraiosis [J]. Acta Neurol Scand, 2011, 123(1): 41‐47.
13
Valdés Hernández MC, Piper RJ, Bastin ME, et al. Morphologic, distributional, volumetric, and intensity characterization of periventricular hyperintensities [J]. AJNR Am J Neuroradiol, 2014, 35(1): 55-62.
14
DeCarli C, Fletcher E, Ramey V, et al. Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden [J]. Stroke, 2005, 36(1): 50‐55.
15
Ryu WS, Woo SH, Schellingerhout D, et al. Grading and interpretation of white matter hyperintensities using statistical maps [J]. Stroke, 2014, 45(12): 3567‐3575.
16
Black S, Gao F, Bilbao J. Understanding white matter disease: imaging-pathological correlations in vascular cognitive impairment [J]. Stroke, 2009, 40(3 Suppl): S48‐S52.
17
Gouw AA, Seewann A, van der Flier WM, et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations [J]. J Neurol Neurosurg Psychiatry, 2011, 82(2): 126‐135.
18
Moody DM, Brown WR, Challa VR, et al. Periventricular venous collagenosis: association with leukoaraiosis [J]. Radiology, 1995, 194(2): 469‐476.
19
ten Dam VH, van den Heuvel DM, de Craen AJ, et al. Decline in total cerebral blood flow is linked with increase in periventricular but not deep white matter hyperintensities [J]. Radiology, 2007, 243(1): 198‐203.
20
Gupta N, Simpkins AN, Hitomi E, et al. NIH Natural History of Stroke Investigators. White Matter Hyperintensity-Associated Blood-Brain Barrier Disruption and Vascular Risk Factors [J]. J Stroke Cerebrovasc Dis, 2018, 27(2): 466‐471.
21
Tully PJ, Yano Y, Launer LJ, et al. Association Between Blood Pressure Variability and Cerebral Small-Vessel Disease: A Systematic Review and Meta-Analysis [J]. J Am Heart Assoc, 2020, 9(1): e013841.
22
Prins ND, van Dijk EJ, den Heijer T, et al. Cerebral small-vessel disease and decline in information processing speed, executive function and memory [J]. Brain, 2005, 128(Pt 9): 2034‐2041.
23
Stevens SL, Wood S, Koshiaris C, et al. Blood pressure variability and cardiovascular disease: systematic review and meta-analysis [J]. BMJ, 2016, 354: i4098.
24
Kim BJ, Kwon SU, Park JM, et al. Blood Pressure Variability Is Associated With White Matter Lesion Growth in Intracranial Atherosclerosis [J]. Am J Hypertens, 2019, 32(9): 918‐924.
25
van Middelaar T, Richard E, Moll van Charante EP, et al. Visit-to-Visit Blood Pressure Variability and Progression of White Matter Hyperintensities Among Older People With Hypertension [J]. J Am Med Dir Assoc, 2019, 20(9): 1175-1177.
26
Liu Z, Zhao Y, Zhang H, et al. Excessive variability in systolic blood pressure that is self-measured at home exacerbates the progression of brain white matter lesions and cognitive impairment in the oldest old [J]. Hypertens Res, 2016, 39(4): 245‐253.
27
Havlik RJ, Foley DJ, Sayer B, et al. Variability in midlife systolic blood pressure is related to late-life brain white matter lesions: the Honolulu-Asia Aging study [J]. Stroke, 2002, 33(1): 26‐30.
28
McNeil CJ, Myint PK, Sandu AL, et al. Increased diastolic blood pressure is associated with MRI biomarkers of dementia-related brain pathology in normative ageing [J]. Age Ageing, 2018, 47(1): 95‐100.
29
Gómez-Angelats E, de La Sierra A, Sierra C, et al. Blood pressure variability and silent cerebral damage in essential hypertension [J]. Am J Hypertens, 2004, 17(8): 696‐700.
30
Okada Y, Galbreath MM, Shibata S, et al. Morning blood pressure surge is associated with arterial stiffness and sympathetic baroreflex sensitivity in hypertensive seniors [J]. Am J Physiol Heart Circ Physiol, 2013, 305(6): H793‐H802.
31
Kario K, Wang JG. Could 130/80 mm Hg Be Adopted as the Diagnostic Threshold and Management Goal of Hypertension in Consideration of the Characteristics of Asian Populations? [J]. Hypertension, 2018, 71(6): 979‐984.
32
Nakanishi K, Jin Z, Homma S, et al. Night-time systolic blood pressure and subclinical cerebrovascular disease: the Cardiovascular Abnormalities and Brain Lesions (CABL) study [J]. Eur Heart J Cardiovasc Imaging, 2019, 20(7): 765‐771.
33
White WB, Wolfson L, Wakefield DB, et al. Average daily blood pressure, not office blood pressure, is associated with progression of cerebrovascular disease and cognitive decline in older people [J]. Circulation, 2011, 124(21): 2312‐2319.
34
Goldstein IB, Bartzokis G, Guthrie D, et al. Ambulatory blood pressure and the brain: a 5-year follow-up [J]. Neurology, 2005, 64(11): 1846‐1852.
35
Puisieux F, Monaca P, Deplanque D, et al. Relationship between leuko-araiosis and blood pressure variability in the elderly [J]. Eur Neurol, 2001, 46(3): 115‐120.
36
Sierra C, de La Sierra A, Mercader J, et al. Silent cerebral white matter lesions in middle-aged essential hypertensive patients [J]. J Hypertens, 2002, 20(3): 519‐524.
37
Asayama K, Ohkubo T, Hanazawa T, et al. Does Antihypertensive Drug Class Affect Day-to-Day Variability of Self-Measured Home Blood Pressure? The HOMED-BP Study [J]. J Am Heart Assoc, 2016, 5(3): e002995.
38
Mancia G, Facchetti R, Parati G, et al. Visit-to-visit blood pressure variability in the European Lacidipine Study on Atherosclerosis: methodological aspects and effects of antihypertensive treatment [J]. J Hypertens, 2012, 30(6): 1241‐1251.
39
van Middelaar T, Argillander TE, FHBM Schreuder, et al. Effect of Antihypertensive Medication on Cerebral Small Vessel Disease: A Systematic Review and Meta-Analysis [J]. Stroke, 2018, 49(6): 1531‐1533.
40
White WB, Wakefield DB, Moscufo N, et al. Effects of Intensive Versus Standard Ambulatory Blood Pressure Control on Cerebrovascular Outcomes in Older People (INFINITY) [J]. Circulation, 2019, 140(20): 1626‐1635.
41
Ikeme JC, Pergola PE, Scherzer R, et al. Cerebral White Matter Hyperintensities, Kidney Function Decline, and Recurrent Stroke After Intensive Blood Pressure Lowering: Results From the Secondary Prevention of Small Subcortical Strokes ( SPS 3) Trial [J]. J Am Heart Assoc, 2019, 8(3): e010091.
42
Moran C, Phan TG, Srikanth VK. Cerebral small vessel disease: a review of clinical, radiological, and histopathological phenotypes [J]. Int J Stroke, 2012, 7(1): 36‐46.
43
Dufouil C, Chalmers J, Coskun O, et al. Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke: the PROGRESS (Perindopril Protection Against Recurrent Stroke Study) Magnetic Resonance Imaging Substudy [J]. Circulation, 2005, 112(11): 1644‐1650.
44
Edwards JD, Ramirez J, Callahan BL, et al. Antihypertensive Treatment is associated with MRI-Derived Markers of Neurodegeneration and Impaired Cognition: A Propensity-Weighted Cohort Study [J]. J Alzheimers Dis, 2017, 59(3): 1113‐1122.
45
Weber R, Weimar C, Blatchford J, et al. Telmisartan on top of antihypertensive treatment does not prevent progression of cerebral white matter lesions in the prevention regimen for effectively avoiding second strokes (PRoFESS) MRI substudy [J]. Stroke, 2012, 43(9): 2336‐2342.
46
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国脑小血管病诊治共识 [J]. 中华神经科杂志, 2015, 48(10): 838-844.
[1] 许秀兰, 朱建建. 血压变异性与伴H型高血压的急性脑梗死患者预后不良的临床关系分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 199-204.
[2] 曾书燚, 梁祥文, 林智海, 黎艺毅, 凌政, 王正东. 24小时尿蛋白、血压变异性与原发性高血压患者发生睡眠障碍的关系[J]. 中华临床医师杂志(电子版), 2023, 17(01): 48-53.
[3] 逯蕊, 赵丽丽, 韩元福, 李俊. 缺血性脑卒中患者血压变异性与预后相关性的研究进展[J]. 中华诊断学电子杂志, 2016, 04(02): 136-138.
[4] 殷怡维, 焦正, 方文涛. 胸外科术前基础疾病的药物管理[J]. 中华胸部外科电子杂志, 2022, 09(04): 255-263.
[5] 高阳, 徐志鹏, 刘彦超, 郑杰, 何本荣, 江涛, 孙飞, 梁奕, 王建枝. 2型糖尿病患者认知功能障碍与脑白质高信号负荷及分布特征的相关性[J]. 中华老年病研究电子杂志, 2022, 09(01): 9-15.
[6] 张蓉, 赵晨阳, 何志义. 不同影像学表现的脑小血管病所致认知障碍特点的研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(01): 44-47.
阅读次数
全文


摘要