切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (05) : 276 -280. doi: 10.11817/j.issn.1673-9248.2021.05.001

专家论坛

脑细胞外间隙与缺血性脑卒中的研究进展
蔡宪杰1, 高亚娟2, 傅瑜3,()   
  1. 1. 100191 北京大学第三医院放射科;100191 北京市磁共振成像与技术重点实验室
    2. 100191 北京大学第三医院放射科
    3. 100191 北京大学第三医院神经内科
  • 收稿日期:2021-08-04 出版日期:2021-10-09
  • 通信作者: 傅瑜

Research progress of brain extracellular space and ischemic stroke

Xianjie Cai1, Yajuan Gao2, Yu Fu3,()   

  1. 1. Department of Radiology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Lab of Magnetic Resonance Imaging Device and Technique, Beijing 100191, China
    2. Department of Radiology, Peking University Third Hospital, Beijing 100191, China
    3. Department of Neurology, Peking University Third Hospital, Beijing 100191, China
  • Received:2021-08-04 Published:2021-10-09
  • Corresponding author: Yu Fu
引用本文:

蔡宪杰, 高亚娟, 傅瑜. 脑细胞外间隙与缺血性脑卒中的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2021, 15(05): 276-280.

Xianjie Cai, Yajuan Gao, Yu Fu. Research progress of brain extracellular space and ischemic stroke[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2021, 15(05): 276-280.

脑卒中是严重影响我国国民健康的重大疾病。由于人口老龄化的加重以及饮食结构的变化,其发病率逐年升高。脑卒中类型以缺血性脑卒中为主。长期以来,缺血性脑卒中的药物治疗一直以血管系统给药为主。脑细胞外间隙(ECS)是存在于脑细胞间及细胞与血管之间的狭窄空隙,与各类脑细胞直接接触,为脑细胞生存及行使功能提供微环境,是潜在的缺血性脑卒中治疗途径。升级的脑ECS结构探索技术使全脑范围活体检测脑ECS结构及其内的物质转运成为了可能,通过脑ECS途径治疗缺血性脑卒中成为可以实现的治疗策略。本文就脑ECS的概念及其在缺血性脑卒中发生后的变化以及经该途径给药治疗缺血性脑卒中的最新突破进行综述。

Stroke is a major disease that seriously affects the health of our nationals. Due to the aggravation of population aging and changes in diet structure, the incidence of stroke is increasing gradually. Ischemic stroke is the major type of stroke. For a long time, the drug treatment of stroke has been taken dominantly via the vascular system, with limited success. The brain extracellular space (ECS) is a narrow space between brain cells and blood vessels. The brain ECS is directly contacted with various types of brain cells, providing a microenvironment for the survival and functioning of brain cells, which is potential treatment pathway for ischemic stroke. The upgraded brain ECS exploration technology makes it possible to detect the structure of brain ECS and the substance transportation within the whole brain in vivo. The treatment of ischemic stroke through the brain ECS approach has become an achievable treatment strategy. This article reviews the concept of brain ECS and its changes after ischemic stroke, as well as the latest breakthroughs in the treatment of ischemic stroke through this route.

表1 脑细胞间液引流与间质系统定量分析方法的原理及技术性能指标比较
表2 脑细胞外间隙几何结构和细胞间液引流的生物物理学参数
1
王拥军, 李子孝, 赵继宗, 等. 中国卒中报告2019(中文版)(1) [J]. 中国卒中杂志, 2020, 15(10): 1037-1043..
2
Wu S, Wu B, Anderson CS, et al. Stroke in China: advances and challenges in epidemiology, prevention, and management [J] . Lancet Neurol, 2019, 18(4): 394-405.
3
Gao Y, Jiang B, Sun H, et al. The burden of stroke in China: results from a nationwide population-based epidemiological survey [J]. PloS One, 2018, 13(12): e0208398.
4
《中国脑卒中防治报告》编写组. 《中国脑卒中防治报告2019》概要 [J]. 中国脑血管病杂志, 2020, 17(5): 272-281.
5
蔡婧婧, 雷志浩, 任力杰, 等. 卒中救治和质量控制体系的建设与研究进展 [J]. 中国卒中杂志, 2021, 16(1): 1-5.
6
Fukuta T, Ishii T, Oku N, et al. Applications of liposomal drug delivery systems to develop neuroprotective agents for the treatment of ischemic stroke [J]. Biol Pharm Bull, 2019, 42(3): 319-326.
7
Hong SB, Yang H, Hu Q, et al. Potential of exosomes for the treatment of stroke [J]. Cell Transplant, 2019, 28(6): 662-670.
8
Patel MM, Patel BM. Crossing the blood-brain barrier: recent advances in drug delivery to the brain [J]. CNS Drugs, 2017, 31(2): 109-133.
9
Tsou YH, Zhang XQ, Xu X , et al. Drug delivery to the brain across the blood-brain barrier using nanomaterials [J]. Small, 2018, 14(25): e1801588.
10
Lei Y, Han H, Zhao Y, et al. The brain interstitial system: anatomy, modeling, in vivo measurement, and applications [J]. Prog Neurobiol, 2017, 157: 230-246.
11
Odackal J, Colbourn R, Hrabetova S, et al. Real-time iontophoresis with tetramethylammonium to quantify volume fraction and tortuosity of brain extracellular space [J]. Vis Exp, 2017(125): 55755
12
Shetty AK, Zanirati G. The interstitial system of the brain in health and disease [J]. Aging Dis, 2020, 11(1): 200-211.
13
Bergsneider M. Evolving concepts of cerebrospinal fluid physiology [J]. Neurosurg Clin N Am, 2001, 12(4): 631-638.
14
Edsbagge M, Tisell M, Wikkelso C, et al. Spinal CSF absorption in healthy individuals [J]. Am J Physiol Regul Integr Comp Physiol, 2004, 287(6): 1450-1455.
15
Milhorat TH. The third circulation revisited [J]. Neurosurg, 1975, 42(6): 628-645.
16
Bonneh-Barkay D, Wiley CA. Brain extracellular matrix in neurodegeneration [J]. Brain Pathol, 2009, 19(4): 573-585.
17
Nicholson C, Hrabětová S. Brain extracellular space: the final frontier of neuroscience [J]. Biophys, 2017, 113(10): 2133-2142.
18
Nicholson C. Ion-selective microelectrodes and diffusion measurements as tools to explore the brain cell microenvironment [J]. Neurosci Methods, 1993, 48(3): 199-213.
19
Nicholson C, Tao L. Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging [J]. Biophys J, 1993, 65(6): 2277-2290.
20
Han H, Shi C, He Q, et al. A novel MRI tracer-based method for measuring water diffusion in the extracellular space of the rat brain [J]. IEEE J Biomed Health Inform, 2014, 18(3): 978-983.
21
Xu F, Han H, Fu Y, et al. Quantification of Gd-DTPA concentration in neuroimaging using T13D MP-RAGE sequence at 3.0 T [J]. Magn Reson Imaging, 2011, 29(6): 827-834.
22
Wang A, Wang R, Liu H, et al. The drainage of interstitial fluid in the deep brain is controlled by the integrity of myelination [J]. Aging Dis, 2019, 10(5): 937-948.
23
Steiner E, Enzmann GU, Zuber B, et al. Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation [J]. Glia, 2012, 60(11): 1646-1659.
24
Hrabetová S, Nicholson C. Dextran decreases extracellular tortuosity in thick-slice ischemia model [J]. J Cereb Blood Flow Metab, 2000, 20(9): 1306-1310.
25
Hrabetová S, Hrabe J, Nicholson C. Dead-space microdomains hinder extracellular diffusion in rat neocortex during ischemia [J]. J Neurosci, 2003, 23(23): 8351-8359.
26
Gaberel T, Gakuba C, Emery E, et al. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? [J]. Stroke, 2014, 45(10): 3092-3096.
27
Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke [J]. Dev Neurobiol, 2011, 71(11): 1018-1039.
28
Adams RA, Schachtrup C, Davalos D, et al. Fibrinogen signal transduction as a mediator and therapeutic target in inflammation: lessons from multiple sclerosis [J]. Curr Med Chem, 2007, 14(27): 2925-2936.
29
Ryu JK, Davalos D, Akassoglou K. Fibrinogen signal transduction in the nervous system [J]. Thromb Haemost, 2009, 7Suppl 1(Suppl 1): 151-154.
30
Edwards DN, Bix GJ. Roles of blood-brain barrier integrins and extracellular matrix in stroke [J]. Am J Physiol Cell Physiol, 2019, 316(2): C252-C263.
31
Bobo RH, Laske DW, Oldfield EH, et al. Convection-enhanced delivery of macromolecules in the brain [J]. Proc Natl Acad Sci U S A, 1994, 91(6): 2076-2080.
32
Saito R, Tominaga T. Convection-enhanced delivery of therapeutics for malignant gliomas [J]. Neurol Med Chir (Tokyo), 2017, 57(1): 8-16.
33
Vogelbaum MA, Aghi MK. Convection-enhanced delivery for the treatment of glioblastoma [J]. Neuro Oncol, 2015, 17Suppl 2(Suppl 2): 3-8.
34
Mehta AM, Sonabend AM, Bruce JN. Convection-enhanced delivery [J]. Neurotherapeutics, 2017, 14(2): 358-371.
35
Han H, Xia Z, Li W, et al. Simple diffusion delivery via brain interstitial route for the treatment of cerebral ischemia [J]. Sci China Life Sci, 2011, 54(3): 235-239.
36
Xu F, Hongbin H, Xu W, et al. Greatly improved neuroprotective efficiency of citicoline by stereotactic delivery in treatment of ischemic injury [J]. Drug Deliv, 2011, 18(7): 461-467.
37
Fu Y, Li Y, Zhang W, et al. Bloodletting at Jing-well points decreases interstitial fluid flow in the thalamus of rats [J]. Tradit Chin Med, 2016, 36(1): 107-112.
[1] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[2] 曹琮沅, 黄烁金, 何倩婷, 王安训. 平阳霉素复合剂治疗口腔颌面部脉管畸形的有效性和安全性[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 368-374.
[3] 严华悦, 刘子祥, 周少波. 磷酸烯醇式丙酮酸羧激酶-1在恶性肿瘤中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 452-456.
[4] 高俊颖, 张海洲, 区泓乐, 孙强. FOLFOX-HAIC 为基础的肝细胞癌辅助转化治疗的应用进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 457-463.
[5] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[6] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
[7] 刘柏隆, 周祥福. 压力性尿失禁阶梯治疗的项目介绍[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 125-125.
[8] 刘柏隆. 女性压力性尿失禁阶梯治疗之手术治疗方案选择[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 126-126.
[9] 王秋生. 胆道良性疾病诊疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 779-782.
[10] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[11] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[12] 崔军威, 蔡华丽, 胡艺冰, 胡慧. 亚甲蓝联合金属定位夹及定位钩针标记在乳腺癌辅助化疗后评估腋窝转移淋巴结的临床应用价值探究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 625-632.
[13] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[14] 张平骥, 徐钰, 李天水, 庞文翼, 符师宁, 张梦圆. 重症患者镇静治疗现状及期望的调查研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 562-567.
[15] 王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.
阅读次数
全文


摘要