切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (05) : 281 -286. doi: 10.11817/j.issn.1673-9248.2021.05.002

专家论坛

多模态磁共振技术在脑白质损伤相关认知障碍中的应用
杨丹1, 徐运1,()   
  1. 1. 210008 南京大学医学院附属鼓楼医院神经内科
  • 收稿日期:2020-12-14 出版日期:2021-10-09
  • 通信作者: 徐运
  • 基金资助:
    国家重点研发计划(2016YFC1300504); 国家自然科学基金(81920108017,81630028); 江苏省医学重点学科(ZDXKA2016020)

Application of multimodal magnetic resonance technologies in white matter lesion related cognitive impairment

Dan Yang1, Yun Xu1()   

  1. 1. Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
  • Received:2020-12-14 Published:2021-10-09
  • Corresponding author: Yun Xu
引用本文:

杨丹, 徐运. 多模态磁共振技术在脑白质损伤相关认知障碍中的应用[J/OL]. 中华脑血管病杂志(电子版), 2021, 15(05): 281-286.

Dan Yang, Yun Xu. Application of multimodal magnetic resonance technologies in white matter lesion related cognitive impairment[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2021, 15(05): 281-286.

脑白质损伤(WML)是脑小血管病的常见影像学特征,其与认知障碍密切相关,且是脑卒中和痴呆的重要危险因素。神经影像学的快速发展使人们对WML与衰老相关的认知减退和痴呆有了更深入地了解,近年来多模态磁共振技术被用于探讨WML相关认知障碍的潜在机制,可能为WML导致认知障碍的结构和功能改变提供一定的理论基础。本文就多模态磁共振技术在WML相关认知障碍中的应用进展进行综述。

White matter lesion (WML) is a common imaging characteristic of cerebral small vessel disease, which is closely related to cognitive impairment (CI) and is an important risk factor for stroke and dementia. The rapid development of neuroimaging has led to a deeper understanding of the age-related cognitive decline and dementia in WML. In recent years, multimodal magnetic resonance technologies have been used to explore the potential mechanism of WML related CI, which may provide further insights into the structural and functional changes caused by WML. This article reviews the application progress in multimodal magnetic resonance in WML related CI.

表1 不同MRI技术在WML相关认知障碍中的应用比较
1
Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis [J]. BMJ, 2010, 341: c3666.
2
Sam K, Crawley AP, Poublanc J, et al. Vascular dysfunction in leukoaraiosis [J]. AJNR Am J Neuroradiol, 2016, 37(12): 2258-2264.
3
Longstreth WT, Manolio TA, Arnold A, et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study [J]. Stroke, 1996, 27(8): 1274-1282.
4
Han F, Zhai FF, Wang Q, et al. Prevalence and risk factors of cerebral small vessel disease in a Chinese population-based sample [J]. J Stroke, 2018, 20(2): 239-246.
5
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国脑小血管病诊治共识 [J]. 中华神经科杂志, 2015, 48(10): 838-844.
6
Prins ND, Scheltens P. White matter hyperintensities, cognitive impairment and dementia: an update [J]. Nat Rev Neurol, 2015, 11(3): 157-165.
7
Ren XM, Qiu SW, Liu RY, et al. White matter lesions predict recurrent vascular events in patients with transient ischemic attacks [J]. Chin Med J (Engl), 2018, 131(2): 130-136.
8
Jorgensen DR, Shaaban CE, Wiley CA, et al. A population neuroscience approach to the study of cerebral small vessel disease in midlife and late life: an invited review [J]. Am J Physiol Heart Circ Physiol, 2018, 314(6): H1117-H1136.
9
Gottesman RF, Fornage M, Knopman DS, et al. Brain aging in African-Americans: the Atherosclerosis Risk in Communities (ARIC) experience [J]. Curr Alzheimer Res, 2015, 12(7): 607-613.
10
Van Dijk EJ, Prins ND, Vrooman HA, et al. Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam Scan study [J]. Stroke, 2008, 39(10): 2712-2719.
11
Brickman AM, Schupf N, Manly JJ, et al. APOE epsilon4 and risk for Alzheimer's disease: do regionally distributed white matter hyperintensities play a role? [J]. Alzheimers Dement, 2014, 10(6): 619-629.
12
Dickie DA, Ritchie SJ, Cox SR, et al. Vascular risk factors and progression of white matter hyperintensities in the Lothian Birth Cohort 1936 [J]. Neurobiol Aging, 2016, 42: 116-123.
13
Godin O, Tzourio C, Maillard P, et al. Antihypertensive treatment and change in blood pressure are associated with the progression of white matter lesion volumes: the Three-City (3C)-Dijon Magnetic Resonance Imaging Study [J]. Circulation, 2011, 123(3): 266-273.
14
Vuorinen M, Spulber G, Damangir S, et al. Midlife CAIDE dementia risk score and dementia-related brain changes up to 30 years later on magnetic resonance imaging [J]. J Alzheimers Dis, 2015, 44(1): 93-101.
15
Shinto L, Lahna D, Murchison CF, et al. Oxidized products of omega-6 and omega-3 long chain fatty acids are associated with increased white matter hyperintensity and poorer executive function performance in a cohort of cognitively normal hypertensive older adults [J]. J Alzheimers Dis, 2020, 74(1): 65-77.
16
Debette S, Seshadri S, Beiser A, et al. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline [J]. Neurology, 2011, 77(5): 461-468.
17
Nagai M, Hoshide S, Takahashi M, et al. Sleep duration, kidney function, and their effects on cerebral small vessel disease in elderly hypertensive patients [J]. Am J Hypertens, 2015, 28(7): 884-893.
18
Ramos AR, Dong C, Rundek T, et al. Sleep duration is associated with white matter hyperintensity volume in older adults: the Northern Manhattan Study [J]. J Sleep Res, 2014, 23(5): 524-530.
19
Satizabal CL, Zhu YC, Mazoyer B, et al. Circulating IL-6 and CRP are associated with MRI findings in the elderly: the 3C-Dijon Study [J]. Neurology, 2012, 78(10): 720-727.
20
Lee KO, Woo MH, Chung D, et al. Differential impact of plasma homocysteine levels on the periventricular and subcortical white matter hyperintensities on the brain [J]. Front Neurol, 2019, 10: 1174.
21
Fernando MS, Simpson JE, Matthews F, et al. White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury [J]. Stroke, 2006, 37(6): 1391-1398.
22
Hainsworth AH, Minett T, Andoh J, et al. Neuropathology of white matter lesions, blood-brain barrier dysfunction, and dementia [J]. Stroke, 2017, 48(10): 2799-2804.
23
Young VG, Halliday GM, Kril JJ. Neuropathologic correlates of white matter hyperintensities [J]. Neurology, 2008, 71(11): 804-811.
24
Joutel A, Chabriat H. Pathogenesis of white matter changes in cerebral small vessel diseases: beyond vessel-intrinsic mechanisms [J]. Clin Sci (Lond), 2017, 131(8): 635-651.
25
Schmidt R, Schmidt H, Haybaeck J, et al. Heterogeneity in age-related white matter changes [J]. Acta Neuropathol, 2011, 122(2): 171-185.
26
Gouw AA, Seewann A, Van Der Flier WM, et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations [J]. J Neurol Neurosurg Psychiatry, 2011, 82(2): 126-135.
27
Simpson JE, Fernando MS, Clark L, et al. White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses [J]. Neuropathol Appl Neurobiol, 2007, 33(4): 410-419.
28
Swardfager W, Yu D, Scola G, et al. Peripheral lipid oxidative stress markers are related to vascular risk factors and subcortical small vessel disease [J]. Neurobiol Aging, 2017, 59: 91-97.
29
Kynast J, Lampe L, Luck T, et al. White matter hyperintensities associated with small vessel disease impair social cognition beside attention and memory [J]. J Cereb Blood Flow Metab, 2018, 38(6): 996-1009.
30
王兴, 首都医科大学附属北京天坛医院神经病学中心, 国家神经系统疾病临床医学研究中心, 等. 脑小血管病脑白质高信号与认知障碍的关系研究进展 [J]. 中国卒中杂志, 2019, 14(11): 1146-1152.
31
Kloppenborg RP, Nederkoorn PJ, Geerlings MI, et al. Presence and progression of white matter hyperintensities and cognition: a meta-analysis [J]. Neurology, 2014, 82(23): 2127-2138.
32
Ai Q, Pu YH, Sy C, et al. Impact of regional white matter lesions on cognitive function in subcortical vascular cognitive impairment[J]. Neurol Res, 2014, 36(5): 434-43.
33
Ding X, Wu J, Zhou Z, et al. Specific locations within the white matter and cortex are involved in the cognitive impairments associated with periventricular white matter lesions (PWMLs) [J]. Behav Brain Res, 2015, 289: 9-18.
34
胡瑞红, 柴长风, 范存秀, 等. 不同脑白质损伤部位对老年轻度认知障碍的影响 [J]. 中国卒中杂志, 2019, 14(9): 889-894.
35
Poggesi A, Pantoni L, Inzitari D, et al. 2001-2011: A decade of the LADIS (Leukoaraiosis And DISability) study: what have we learned about white matter changes and small-vessel disease? [J]. Cerebrovasc Dis, 2011, 32(6): 577-588.
36
Wang R, Fratiglioni L, Laveskog A, et al. Do cardiovascular risk factors explain the link between white matter hyperintensities and brain volumes in old age? A population-based study [J]. Eur J Neurol, 2014, 21(8): 1076-1082.
37
Habes M, Erus G, Toledo JB, et al. Regional tract-specific white matter hyperintensities are associated with patterns to aging-related brain atrophy via vascular risk factors, but also independently [J]. Alzheimers Dement (Amst), 2018, 10: 278-284.
38
Duan D, Li C, Shen L, et al. Regional gray matter atrophy coexistent with occipital periventricular white matter hyper intensities [J]. Front Aging Neurosci, 2016, 8: 214.
39
Arvanitakis Z, Fleischman DA, Arfanakis K, et al. Association of white matter hyperintensities and gray matter volume with cognition in older individuals without cognitive impairment [J]. Brain Struct Funct, 2016, 221(4): 2135-2146.
40
Swardfager W, Cogo-Moreira H, Masellis M, et al. The effect of white matter hyperintensities on verbal memory: Mediation by temporal lobe atrophy [J]. Neurology, 2018, 90(8): e673-e682.
41
Rizvi B, Narkhede A, Last BS, et al. The effect of white matter hyperintensities on cognition is mediated by cortical atrophy [J]. Neurobiol Aging, 2018, 64: 25-32.
42
Li Q, Zhao LQ, Hu FY. Characteristics of cognitive impairment and the resting state functional MRI in patients with leukoaraiosis [J]. Zhonghua Yi Xue Za Zhi, 2017, 97(45): 3529-3533.
43
Ding X, Ding J, Hua B, et al. Abnormal cortical functional activity in patients with ischemic white matter lesions: A resting-state functional magnetic resonance imaging study [J]. Neurosci Lett, 2017, 644: 10-17.
44
Ye Q, Chen X, Qin R, et al. Enhanced regional homogeneity and functional connectivity in subjects with white matter hyperintensities and cognitive impairment [J]. Front Neurosci, 2019, 13: 695.
45
Ding JR, Ding X, Hua B, et al. Altered connectivity patterns among resting state networks in patients with ischemic white matter lesions [J]. Brain Imaging Behav, 2018, 12(5): 1239-1250.
46
Chen H, Huang L, Yang D, et al. Nodal global efficiency in front-parietal lobe mediated Periventricular White Matter Hyperintensity (PWMH)-related cognitive impairment [J]. Front Aging Neurosci, 2019, 11: 347.
47
Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research [J]. Neuron, 2006, 51(5): 527-539.
48
Maillard P, Carmichael O, Harvey D, et al. FLAIR and diffusion MRI signals are independent predictors of white matter hyperintensities [J]. AJNR Am J Neuroradiol, 2013, 34(1): 54-61.
49
Chen HF, Huang LL, Li HY, et al. Microstructural disruption of the right inferior fronto-occipital and inferior longitudinal fasciculus contributes to WMH-related cognitive impairment [J]. CNS Neurosci Ther, 2020, 26(5): 576-588.
50
Yang D, Huang L, Luo C, et al. Impaired structural network properties caused by white matter hyperintensity related to cognitive decline [J]. Front Neurol, 2020, 11: 250.
51
Zhang Y, Schuff N, Camacho M, et al. MRI markers for mild cognitive impairment: comparisons between white matter integrity and gray matter volume measurements [J]. PLoS One, 2013, 8(6): e66367.
52
Zhang CE, Wong SM, Van De Haar HJ, et al. Blood-brain barrier leakage is more widespread in patients with cerebral small vessel disease [J]. Neurology, 2017, 88(5): 426-432.
53
Nation DA, Sweeney MD, Montagne A, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction [J]. Nat Med, 2019, 25(2): 270-276.
54
Wong SM, Jansen JFA, Zhang CE, et al. Blood-brain barrier impairment and hypoperfusion are linked in cerebral small vessel disease [J]. Neurology, 2019, 92(15): e1669-e1677.
55
Li Y, Li M, Zhang X, et al. Higher blood-brain barrier permeability is associated with higher white matter hyperintensities burden [J]. J Neurol, 2017, 264(7): 1474-1481.
56
Wang S, Yuan J, Guo X, et al. Neurochemical correlates of cognitive dysfunction in patients with leukoaraiosis: a proton magnetic resonance spectroscopy study [J]. Neurol Res, 2012, 34(10): 989-997.
57
Li C, Ling X, Liu S, et al. Abnormalities of magnetic resonance spectroscopy and diffusion tensor imaging are correlated with executive dysfunction in patients with ischemic leukoaraiosis [J]. J Clin Neurosci, 2012, 19(5): 718-722.
[1] 于桐, 孙姗姗, 刘扬. 乳腺导管原位癌的浸润转化机制及临床病理特征[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 304-307.
[2] 李蓉. 薄型子宫内膜治疗新方法[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 591-591.
[3] 严华悦, 刘子祥, 周少波. 磷酸烯醇式丙酮酸羧激酶-1在恶性肿瘤中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 452-456.
[4] 朱江, 张进, 孔云飞, 李军, 宋旭. 核梭杆菌和胰腺癌的关系及临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 448-451.
[5] 刘璐璐, 何羽. 慢性阻塞性肺病患者睡眠障碍的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 836-839.
[6] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[7] 王庭宇, 邵联波, 刘珊, 沈振亚. Stanford A 型主动脉夹层相关基因KIF20A 的共表达网络构建及作用靶点分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 303-312.
[8] 孟煜凡, 李永政, 樊知遥, 展翰翔. 瘤内微生物在胰腺癌发病和演进中的作用机制及研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 577-582.
[9] 赵泽云, 李建男, 王旻. 中性粒细胞胞外诱捕网在结直肠癌中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 524-528.
[10] 王梦琪, 刘恒昌, 陈海鹏, 刘佳. 骶神经刺激治疗排便失禁的机制研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 417-422.
[11] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[12] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[13] 徐靖亭, 孔璐. PARP抑制剂治疗卵巢癌的耐药机制及应对策略[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 584-588.
[14] 周佳佳, 俞莹, 梁舒. 视频终端视相关性干眼症的机制研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 402-406.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要