切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (05) : 287 -292. doi: 10.11817/j.issn.1673-9248.2021.05.003

专家论坛

对流增强给药治疗胶质母细胞瘤的研究进展
叶飞龙1, 杨冠英1,(), 王伟1   
  1. 1. 528000 广东佛山,佛山市第一人民医院影像科
  • 收稿日期:2021-04-28 出版日期:2021-10-09
  • 通信作者: 杨冠英
  • 基金资助:
    国家自然科学基金(12071075); 广东省医学科研基金(A2020278); 佛山市登峰计划(2019C016)

A systematic review on convection-enhancement delivery for glioblastoma treatment

Feilong Ye1, Guanying Yang1(), Wei Wang1   

  1. 1. Department of Radiology, the First People's Hospital of Foshan, Foshan 528000, China
  • Received:2021-04-28 Published:2021-10-09
  • Corresponding author: Guanying Yang
引用本文:

叶飞龙, 杨冠英, 王伟. 对流增强给药治疗胶质母细胞瘤的研究进展[J]. 中华脑血管病杂志(电子版), 2021, 15(05): 287-292.

Feilong Ye, Guanying Yang, Wei Wang. A systematic review on convection-enhancement delivery for glioblastoma treatment[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2021, 15(05): 287-292.

胶质母细胞瘤是中枢神经系统最具侵袭性和最常见的恶性肿瘤,临床常选择手术切除后辅以放化疗进行治疗,但疗效不尽如人意,主要原因包括肿瘤难以完全切除、血脑屏障对药物的限制以及肿瘤细胞产生耐药性。对流增强给药(CED)是一种有望改善胶质母细胞瘤化疗效果的技术手段。本文通过查阅2000年至2020年间CED治疗胶质母细胞瘤的相关文献,从CED技术基础、动物模型、化疗药物、药物示踪、临床研究等方面进行综述。结果显示CED技术具有克服血脑屏障、诱导肿瘤内免疫反应、降低系统性毒性等优势,在胶质母细胞瘤的化疗中潜力极大。阐释药物在细胞间隙内的转运和代谢规律、研发高效的化疗-示踪多模态纳米药物是CED技术未来的发展方向。

Glioblastoma (GBM) is the most aggressive and common malignant tumor in the central nervous system. Current therapeutic regimens, including surgical resection combined with external radiation and chemotherapy, are insufficient to treat GBM. Three important factors account for the lack of efficacy. GBM can infiltrate into surrounding tissues and makes complete resection impossible. Besides, the blood-brain barrier usually prevents therapeutic agents and limits the chemotherapy efficacy. In addition, tumor cells can develop resistance to therapeutic agents. Convection-enhancement delivery (CED) is the technique that is expected to improve the efficacy of chemotherapy in GBM. The systematic overview of CED in the treatment of GBM is based on the researches from 2000 to 2020, involving in the technical basis of CED, animal models, chemotherapeutic agents, tracing, and clinical research. The results show that CED technology has advantages including overcoming the blood-brain barrier, inducing the immune reaction in the tumor, and reducing systemic toxicity. In the future, the mechanism on transportation and metabolism of drugs in the extracellular space and the development of chemotherapy-tracing multimodal nano-agents should be warranted.

1
Nam L, Coll C, Erthal LCS, et al. Drug delivery nanosystems for the localized treatment of glioblastoma multiforme [J]. Materials (Basel), 2018, 11(5): 779.
2
Goodenberger ML, Jenkins RB. Genetics of adult glioma [J]. Cancer Genet, 2012, 205(12): 613-621.
3
Halle B, Mongelard K, Poulsen FR. Convection-enhanced drug delivery for glioblastoma: a systematic review focused on methodological differences in the use of the convection-enhanced delivery method [J]. Asian J Neurosurg, 2019, 14(1): 5-14.
4
付睿, 王莉莉, 杨启舟. 肿瘤相关脑梗死发病机制的研究进展 [J]. 中国卒中杂志, 2021, 16(2): 124-129.
5
付睿. 肿瘤合并缺血性卒中的研究现状及展望 [J]. 中国卒中杂志, 2021, 16(2): 119-122.
6
Dong X. Current strategies for brain drug delivery [J]. Theranostics, 2018, 8(6): 1481-1493.
7
Bobo RH, Laske DW, Akbasak A, et al. Convection-enhanced delivery of macromolecules in the brain [J]. Proc Natl Acad Sci U S A, 1994, 91(6): 2076-2080.
8
Jahangiri A, Chin AT, Flanigan PM, et al. Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies [J]. J Neurosurg, 2017, 126(1): 191-200.
9
王艾博, 田灿, 李媛媛, 等. 经脑细胞外间隙途径对流增强给药在中枢神经系统疾病治疗中研究进展 [J]. 生物医学工程与临床, 2019, 23(4): 481-486.
10
梅国顺, 杜建新. 脑胶质瘤治疗的新途径——增强对流输送 [J]. 中华神经外科杂志, 2008, 24(4): 314-316.
11
Lonser RR, Walbridge S, Garmestani K, et al. Successful and safe perfusion of the primate brainstem: in vivo magnetic resonance imaging of macromolecular distribution during infusion [J]. J Neurosurg, 2002, 97(4): 905-913.
12
Vogelbaum MA. Convection enhanced delivery for the treatment of malignant gliomas: symposium review [J]. J Neurooncol, 2005, 73(1): 57-69.
13
宋宇, 韩鸿宾, 杨军, 等. 脑对流增强给药对老年大鼠脑细胞外间隙微观结构的影响 [J]. 北京大学学报(医学版), 2020, 52(2): 362-367.
14
Freeman AC, Platt SR, Holmes S, et al. Convection-enhanced delivery of cetuximab conjugated iron-oxide nanoparticles for treatment of spontaneous canine intracranial gliomas [J]. J Neurooncol, 2018, 137(3): 653-663.
15
White E, Bienemann A, Pugh J, et al. An evaluation of the safety and feasibility of convection-enhanced delivery of carboplatin into the white matter as a potential treatment for high-grade glioma [J]. J Neurooncol, 2012, 108(1): 77-88.
16
Barth RF, Kaur B. Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas [J]. J Neurooncol, 2009, 94(3): 299-312.
17
Doblas S, He T, Saunders D, et al. Glioma morphology and tumor-induced vascular alterations revealed in seven rodent glioma models by in vivo magnetic resonance imaging and angiography [J]. J Magn Reson Imaging, 2010, 32(2): 267-275.
18
Doblas S, He T, Saunders D, et al. In vivo characterization of several rodent glioma models by 1H MRS [J]. NMR Biomed, 2012, 25(4): 685-694.
19
Kondo A, Goldman S, Lulla RR, et al. Longitudinal assessment of regional directed delivery in a rodent malignant glioma model [J]. J Neurosurg Pediatr, 2009, 4(6): 592-598.
20
Jallo GI, Volkov A, Wong C, et al. A novel brainstem tumor model: functional and histopathological characterization [J]. Childs Nerv Syst, 2006, 22(12): 1519-1525.
21
Saucier-Sawyer JK, Seo YE, Gaudin A, et al. Distribution of polymer nanoparticles by convection-enhanced delivery to brain tumors [J]. J Control Release, 2016, 232: 103-112.
22
Thisgaard H, Halle B, Aaberg-Jessen C, et al. Highly effective auger-electron therapy in an orthotopic glioblastoma xenograft model using convection-enhanced delivery [J]. Theranostics, 2016, 6(12): 2278-2291.
23
Shi M, Fortin D, Sanche L, et al. Convection-enhancement delivery of platinum-based drugs and Lipoplatin(TM) to optimize the concomitant effect with radiotherapy in F98 glioma rat model [J]. Invest New Drugs, 2015, 33(3): 555-563.
24
王林, 李新平. 铂类药物的毒性作用与预防措施 [J]. 医药导报, 2005, 24(3): 254-256.
25
宇文利霞, 孔应利, 时绘绘. 铂类抗癌药毒性及其与药物化学结构的关系 [J]. 临床合理用药, 2017, 10(2C): 107-108.
26
Shi M, Fortin D, Paquette B, et al. Convection-enhancement delivery of liposomal formulation of oxaliplatin shows less toxicity than oxaliplatin yet maintains a similar median survival time in F98 glioma-bearing rat model [J]. Invest New Drugs, 2016, 34(3): 269-276.
27
Arshad A, Yang B, Bienemann AS, et al. Convection-enhanced delivery of carboplatin PLGA nanoparticles for the treatment of glioblastoma [J]. PLoS One, 2015, 10(7): e0132266.
28
任林强, 蒋正方. 脑胶质瘤的化疗现状及进展 [J]. 川北医学院学报, 2011, 26(1): 87-91.
29
Brem S, Tyler B, Li K, et al. Local delivery of temozolomide by biodegradable polymers is superior to oral administration in a rodent glioma model [J]. Cancer Chemother Pharmacol, 2007, 60(5): 643-650.
30
Fritzell S, Sanden E, Eberstal S, et al. Intratumoral temozolomide synergizes with immunotherapy in a T cell-dependent fashion [J]. Cancer Immunol Immunother, 2013, 62(9): 1463-1474.
31
Mathios D, Kim JE, Mangraviti A, et al. Anti-PD-1 antitumor immunity is enhanced by local and abrogated by systemic chemotherapy in GBM [J]. Sci Transl Med, 2016, 8(370): 370ra180.
32
Bernal GM, LaRiviere MJ, Mansour N, et al. Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma [J]. Nanomedicine, 2014, 10(1): 149-157.
33
Enriquez Perez J, Kopecky J, Visse E, et al. Convection-enhanced delivery of temozolomide and whole cell tumor immunizations in GL261 and KR158 experimental mouse gliomas [J]. BMC Cancer, 2020, 20(1): 7.
34
Grahn AY, Bankiewicz KS, Dugich-Djordjevic M, et al. Non-PEGylated liposomes for convection-enhanced delivery of topotecan and gadodiamide in malignant glioma: initial experience [J]. J Neurooncol, 2009, 95(2): 185-197.
35
Cirpanli Y, Allard E, Passirani C, et al. Antitumoral activity of camptothecin-loaded nanoparticles in 9L rat glioma model [J]. Int J Pharm, 2011, 403(1-2): 201-206.
36
Noble CO, Krauze MT, Drummond DC, et al. Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors: pharmacology and efficacy [J]. Cancer Res, 2006, 66(5): 2801-2806.
37
Han H, Li K, Yan J, et al. An in vivo study with an MRI tracer method reveals the biophysical properties of interstitial fluid in the rat brain [J]. Sci China Life Sci, 2012, 55(9): 782-787.
38
Han H, Shi C, Fu Y, et al. A novel MRI tracer-based method for measuring water diffusion in the extracellular space of the rat brain [J]. IEEE J Biomed Health Inform, 2014, 18(3): 978-983.
39
Xu F, Han H, Zhang H, et al. Quantification of Gd-DTPA concentration in neuroimaging using T(1)3D MP-RAGE sequence at 3.0 T [J]. Magn Reson Imaging, 2011, 29(6): 827-834.
40
Ding D, Kanaly CW, Cummings TJ, et al. Long-term safety of combined intracerebral delivery of free gadolinium and targeted chemotherapeutic agent PRX321 [J]. Neurol Res, 2010, 32(8): 810-815.
41
Sampson JH, Brady M, Raghavan R, et al. Colocalization of gadolinium-diethylene triamine pentaacetic acid with high-molecular-weight molecules after intracerebral convection-enhanced delivery in humans [J]. Neurosurgery, 2011, 69(3): 668-676.
42
Li K, Han H, Zhu K, et al. Real-time magnetic resonance imaging visualization and quantitative assessment of diffusion in the cerebral extracellular space of C6 glioma-bearing rats [J]. Neurosci Lett, 2013, 543: 84-89.
43
Guan X, Wang W, Wang A, et al. Brain interstitial fluid drainage alterations in glioma-bearing rats [J]. Aging Dis, 2018, 9(2): 228.
44
Perlstein B, Ram Z, Daniels D, et al. Convection-enhanced delivery of maghemite nanoparticles: Increased efficacy and MRI monitoring [J]. Neuro Oncol, 2008, 10(2): 153-161.
45
Young JS, Bernal G, Polster SP, et al. Convection-enhanced delivery of polymeric nanoparticles encapsulating chemotherapy in canines with spontaneous supratentorial tumors [J]. World Neurosurg, 2018, 117: e698-e704.
46
Croteau D, Walbridge S, Morrison PF, et al. Real-time in vivo imaging of the convective distribution of a low-molecular-weight tracer [J]. J Neurosurg, 2005, 102(1): 90-97.
47
Miyata S, Kawabata S, Hiramatsu R, et al. Computed tomography imaging of transferrin targeting liposomes encapsulating both boron and iodine contrast agents by convection-enhanced delivery to F98 rat glioma for boron neutron capture therapy [J]. Neurosurgery, 2011, 68(5): 1380-1387; discussion 1387.
48
Laske DW, Youle RJ, Oldfield EH. Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors [J]. Nat Med, 1997, 3(12): 1362-1368.
49
Bruce JN, Fine RL, Canoll P, et al. Regression of recurrent malignant gliomas with convection-enhanced delivery of topotecan [J]. Neurosurgery, 2011, 69(6): 1272-1279; discussion 1279-1280.
[1] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[2] 张莲莲, 惠品晶, 丁亚芳. 颈部血管超声在粥样硬化斑块易损性评估中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 816-821.
[3] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[4] 张华, 孙宇, 乡世健, 李樱媚, 王小群. 循环肿瘤细胞预测晚期胃肠癌患者化疗药物敏感性的研究[J]. 中华普通外科学文献(电子版), 2023, 17(06): 422-425.
[5] 张焱辉, 张蛟, 朱志贤. 留置肛管在中低位直肠癌新辅助放化疗后腹腔镜TME术中的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 25-28.
[6] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[7] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[8] 燕速. 腹腔镜低位直肠癌盆腔侧方淋巴结清扫指征与策略[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 480-484.
[9] 汪洋, 李志鹏, 王可兵. 上尿路尿路上皮癌术后预防性膀胱灌注化疗的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 649-652.
[10] 刘恒, 侯宇川. 膀胱癌新型灌注药物的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 445-451.
[11] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[12] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[13] 李斌奎. 不可切除肝内胆管细胞癌的转化治疗[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 511-516.
[14] 钟广俊, 刘春华, 朱万森, 徐晓雷, 王兆军. MRI联合不同扫描序列在胃癌术前分期诊断及化疗效果和预后的评估[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 378-382.
[15] 牛文博, 吴凤鹏, 刘月平, 周超熙, 张娟, 胡旭华, 李保坤, 王贵英. 新辅助放化疗对局部进展期直肠癌疗效及肿瘤免疫微环境变化的研究[J]. 中华临床医师杂志(电子版), 2023, 17(05): 519-523.
阅读次数
全文


摘要