1 |
中国医师协会神经内科分会认知障碍专业委员会, 《中国血管性认知障碍诊治指南》编写组. 2019年中国血管性认知障碍诊治指南 [J].中华医学杂志, 2019, 99(35): 2737-2744.
|
2 |
Skrobot OA, Black SE, Chen C, et al. Progress toward standardized diagnosis of vascular cognitive impairment: Guidelines from the Vascular Impairment of Cognition Classification Consensus Study [J]. Alzheimers Dement, 2018, 14(3): 280-292.
|
3 |
Jia L, Du Y, Chu L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study [J]. Lancet Public Health, 2020, 5(12): e661-e671.
|
4 |
Mersy DJ. Health benefits of aerobic exercise [J]. Postgrad Med, 1991, 90(1): 103-112.
|
5 |
Piercy KL, Troiano RP, Ballard RM, et al. The physical activity guidelines for Americans [J]. JAMA, 2018, 320(19): 2020-2028.
|
6 |
Van Praag H. Exercise and the brain: something to chew on [J]. Trends Neurosci, 2009, 32(5): 283-290.
|
7 |
Rundek T, Tolea M, Ariko T, et al. Vascular cognitive impairment (VCI) [J]. Neurotherapeutics, 2022, 19(1): 68-88.
|
8 |
Zlokovic BV, Gottesman RF, Bernstein KE, et al. Vascular contributions to cognitive impairment and dementia (VCID): a report from the 2018 National Heart, Lung, and Blood Institute and National Institute of Neurological Disorders and Stroke Workshop [J]. Alzheimers Dement, 2020, 16(12): 1714-1733.
|
9 |
Levit A, Hachinski V, Whitehead SN. Neurovascular unit dysregulation, white matter disease, and executive dysfunction: the shared triad of vascular cognitive impairment and Alzheimer disease [J]. Geroscience, 2020, 42(2): 445-465.
|
10 |
Dichgans M, Leys D. Vascular cognitive impairment [J]. Circ Res, 2017, 120(3): 573-591.
|
11 |
Tian Z, Ji X, Liu J. Neuroinflammation in vascular cognitive impairment and dementia: current evidence, advances, and prospects [J]. Int J Mol Sci, 2022, 23(11): 6224.
|
12 |
Yang Q, Wei X, Deng B, et al. Cerebral small vessel disease alters neurovascular unit regulation of microcirculation integrity involved in vascular cognitive impairment [J]. Neurobiol Dis, 2022, 170: 105750.
|
13 |
Cai W, Zhang K, Li P, et al. Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative diseases: an aging effect [J]. Ageing Res Rev, 2017, 34: 77-87.
|
14 |
Tarumi T, Zhang R. Cerebral blood flow in normal aging adults: cardiovascular determinants, clinical implications, and aerobic fitness [J]. J Neurochem, 2018, 144(5): 595-608.
|
15 |
Guadagni V, Drogos LL, Tyndall AV, et al. Aerobic exercise improves cognition and cerebrovascular regulation in older adults [J]. Neurology, 2020, 94(21): e2245-e2257.
|
16 |
Vidoni ED, Morris JK, Palmer JA, et al. Dementia risk and dynamic response to exercise: a non-randomized clinical trial [J]. PloS One, 2022, 17(7): e0265860.
|
17 |
Wang S, Zhou H, Zhao C, et al. Effect of Exercise training on body composition and inflammatory cytokine levels in overweight and obese individuals: a systematic review and network meta-analysis [J]. Front Immunol, 2022, 13: 921085.
|
18 |
Dichgans M, Zietemann V. Prevention of vascular cognitive impairment [J]. Stroke, 2012, 43(11): 3137-3146.
|
19 |
Skoog I, Nilsson L, Persson G, et al. 15-year longitudinal study of blood pressure and dementia [J]. Lancet, 1996, 347(9009): 1141-1145.
|
20 |
Panza F, Solfrizzi V, Logroscino G, et al. Current epidemiological approaches to the metabolic-cognitive syndrome [J]. J Alzheimers Dis, 2012, 30(s2): S31-S75.
|
21 |
Solomon A, Kåreholt I, Ngandu T, et al. Serum total cholesterol, statins and cognition in non-demented elderly [J]. Neurobiol Aging, 2009, 30(6): 1006-1009.
|
22 |
Sandset EC. More than just the target: blood pressure, stroke, and vascular cognitive impairment [J]. Stroke, 2022, 53(4): 1052-1053.
|
23 |
Kivipelto M, Helkala EL, Hänninen T, et al. Midlife vascular risk factors and late-life mild cognitive impairment: a population-based study [J]. Neurology, 2001, 56(12): 1683-1689.
|
24 |
Ou YN, Tan CC, Shen XN, et al. Blood pressure and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 209 prospective studies [J]. Hypertension, 2020, 76(1): 217-225.
|
25 |
Hughes D, Judge C, Murphy R, et al. Association of blood pressure lowering with incident dementia or cognitive impairment: a systematic review and meta-analysis [J]. JAMA, 2020, 323(19): 1934-1944.
|
26 |
Levine DA, Springer MV, Brodtmann A. Blood pressure and vascular cognitive impairment [J]. Stroke, 2022, 53(4): 1104-1113.
|
27 |
Cunningham EL, Todd SA, Passmore P, et al. Pharmacological treatment of hypertension in people without prior cerebrovascular disease for the prevention of cognitive impairment and dementia [J]. Cochrane Database Syst Rev, 2021, 5(5): CD004034.
|
28 |
Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association [J]. Stroke, 2011, 42(9): 2672-2713.
|
29 |
Higashi Y, Sasaki S, Kurisu S, et al. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide [J]. Circulation, 1999, 100(11): 1194-1202.
|
30 |
Saco-Ledo G, Valenzuela PL, Ramírez-Jiménez M, et al. Acute aerobic exercise induces short-term reductions in ambulatory blood pressure in patients with hypertension: a systematic review and meta-analysis [J]. Hypertension, 2021, 78(6): 1844-1858.
|
31 |
Saco‐Ledo G, Valenzuela PL, Ruiz‐Hurtado G, et al. Exercise reduces ambulatory blood pressure in patients with hypertension: a systematic review and meta‐analysis of randomized controlled trials [J]. J Am Heart Assoc, 2020, 9(24): e018487.
|
32 |
Lopes S, Mesquita-Bastos J, Garcia C, et al. Effect of exercise training on ambulatory blood pressure among patients with resistant hypertension: a randomized clinical trial [J]. JAMA Cardiol, 2021, 6(11): 1317-1323.
|
33 |
Peila R, Rodriguez BL, Launer LJ. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: the Honolulu-Asia Aging Study [J]. Diabetes, 2002, 51(4): 1256-1262.
|
34 |
Sharma S, Brown CE. Microvascular basis of cognitive impairment in type 1 diabetes [J]. Pharmacol Ther, 2021, 229: 107929.
|
35 |
Xu W, Qiu C, Gatz M, et al. Mid-and late-life diabetes in relation to the risk of dementia: a population-based twin study [J]. Diabetes, 2009, 58(1): 71-77.
|
36 |
Dove A, Shang Y, Xu W, et al. The impact of diabetes on cognitive impairment and its progression to dementia [J]. Alzheimers Dement, 2021, 17(11): 1769-1778.
|
37 |
Grace A, Chan E, Giallauria F, et al. Clinical outcomes and glycaemic responses to different aerobic exercise training intensities in type II diabetes: a systematic review and meta-analysis [J]. Cardiovasc Diabetol, 2017, 16(1): 1-10.
|
38 |
Yang Z, Scott CA, Mao C, et al. Resistance exercise versus aerobic exercise for type 2 diabetes: a systematic review and meta-analysis [J]. Sports Med, 2014, 44(4): 487-499.
|
39 |
Rizzo MR, Di Meo I, Polito R, et al. Cognitive impairment and type 2 diabetes mellitus: focus of SGLT2 inhibitors treatment [J]. Pharmacol Res, 2022, 176: 106062.
|
40 |
Lyu F, Wu D, Wei C, et al. Vascular cognitive impairment and dementia in type 2 diabetes mellitus: an overview [J]. Life Sci, 2020, 254: 117771.
|
41 |
Pratley RE, Hagberg JM, Dengel DR, et al. Aerobic exercise training‐induced reductions in abdominal fat and glucose‐stimulated insulin responses in middle‐aged and older men [J]. J Am Geriatr Soc, 2000, 48(9): 1055-1061.
|
42 |
Frampton J, Cobbold B, Nozdrin M, et al. The effect of a single bout of continuous aerobic exercise on glucose, insulin and glucagon concentrations compared to resting conditions in healthy adults: a systematic review, meta-analysis and meta-regression [J]. Sports Med, 2021, 51(9): 1949-1966.
|
43 |
Amarenco P, Bogousslavsky J, Callahan A, et al. Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) Investigators. High-dose atorvastatin after stroke or transient ischemic attack [J]. N Engl J Med, 2006, 355(6): 549-559.
|
44 |
Unit ES. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90 056 participants in 14 randomised trials of statins [J]. Lancet, 2005, 366(9493): 1267-1278.
|
45 |
McGuinness B, Craig D, Bullock R, et al. Statins for the prevention of dementia [J]. Cochrane Database Syst Rev, 2009(1): CD003160.
|
46 |
McGuinness B, Craig D, Bullock R, et al. Statins for the prevention of dementia [J]. Cochrane Database Syst Rev, 2016, 2016(1): CD003160.
|
47 |
Anstey KJ, Cherbuin N, Budge M, et al. Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies [J]. Obes Rev, 2011, 12(5): e426-e437.
|
48 |
Qu Y, Hu HY, Ou YN, et al. Association of body mass index with risk of cognitive impairment and dementia: a systematic review and meta-analysis of prospective studies [J]. Neurosci Biobehav Rev, 2020, 115: 189-198.
|
49 |
Cai M, Zou Z. Effect of aerobic exercise on blood lipid and glucose in obese or overweight adults: a meta-analysis of randomised controlled trials [J]. Obes Res Clin Pract, 2016, 10(5): 589-602.
|
50 |
Northey JM, Cherbuin N, Pumpa KL, et al. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis [J]. Br J Sports Med, 2018, 52(3): 154-160.
|
51 |
Stern Y, MacKay-Brandt A, Lee S, et al. Effect of aerobic exercise on cognition in younger adults: a randomized clinical trial [J]. Neurology, 2019, 92(9): e905-e916.
|
52 |
Tarumi T, Patel NR, Tomoto T, et al. Aerobic exercise training and neurocognitive function in cognitively normal older adults: a one‐year randomized controlled trial [J]. J Intern Med, 2022. Online ahead of print.
|
53 |
Zotcheva E, Håberg AK, Wisløff U, et al. Effects of 5 years aerobic exercise on cognition in older adults: the generation 100 study: a randomized controlled trial [J]. Sports Med, 2022, 52(7): 1689-1699.
|