切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (05) : 314 -319. doi: 10.11817/j.issn.1673-9248.2022.05.005

论著

缺血性脑卒中后不同程度认知障碍危险因素及认知训练效果分析
刘欣1, 王丽娟1, 刘荧1, 王爽1, 徐绍红1, 李小刚2,()   
  1. 1. 100190 北京市中关村医院神经内科
    2. 100191 北京大学第三医院神经内科
  • 收稿日期:2022-06-01 出版日期:2022-10-01
  • 通信作者: 李小刚
  • 基金资助:
    北京市海淀区预防医学会(2018HDPMA11)

Risk factors and Cognitive training effect of varying degrees of post-stroke cognitive impairment

Xin Liu1, Lijuan Wang1, Ying Liu1, Shuang Wang1, Shaohong Xu1, Xiaogang Li2,()   

  1. 1. Department of Neurology, Beijing Zhongguancun Hospital, Beijing 100190, China
    2. Department of Neurology, Peking University Third Hospital, Beijing 100191, China
  • Received:2022-06-01 Published:2022-10-01
  • Corresponding author: Xiaogang Li
引用本文:

刘欣, 王丽娟, 刘荧, 王爽, 徐绍红, 李小刚. 缺血性脑卒中后不同程度认知障碍危险因素及认知训练效果分析[J/OL]. 中华脑血管病杂志(电子版), 2022, 16(05): 314-319.

Xin Liu, Lijuan Wang, Ying Liu, Shuang Wang, Shaohong Xu, Xiaogang Li. Risk factors and Cognitive training effect of varying degrees of post-stroke cognitive impairment[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2022, 16(05): 314-319.

目的

探讨不同程度的缺血性卒中后认知障碍(PSCI)的危险因素及认知训练效果。

方法

连续纳入2019年1月至2021年4月于北京市中关村医院住院的缺血性脑卒中患者,根据蒙特利尔认知评分(MoCA)分为重度认知障碍组(MoCA≤15分)及轻度认知障碍组(15分<MoCA≤24分),采用单因素(t检验、秩和检验和χ2检验)及多因素回归分析比较2组患者的一般人口学资料、生化指标、既往病史、卒中病灶部位、美国国立卫生研究院卒中量表(NHISS)评分、脑小血管病(CSVD)总负荷评分。入组患者完成规律认知训练,3个月后复测MoCA量表,比较训练前后效果。

结果

共纳入64例PSCI患者,重度认知障碍组40例,轻度认知障碍组24例。单因素分析发现重度认知障碍组较轻度认知障碍组在年龄、NIHSS、同型半胱氨酸、C反应蛋白、CSVD总负荷评分方面明显升高[77.5(75.0,81.0)岁 vs 70.0(66.0,76.0)岁;7.5(2.5,8.0)分 vs 3.0(2.0,5.0)分14.7(11.04,19.35)μmol/L vs 12.29(9.57,14.80)μmol/L;3.61(0.97,9.09)mmol/L vs 1.50(0.56,3.45)mmol/L;2.0(2.0,3.0)分 vs 1.0(0,2.0)分],差异均具有统计学意义(Z=-3.636、-2.742、-2.226、-2.207、6.542,P<0.001、<0.001、=0.008、=0.001、<0.001),在血红蛋白、空腹血糖、糖化血红蛋白、低密度脂蛋白及甘油三酯方面明显降低[(122.25±17.32)g/L vs(134.46±16.09)g/L;5.56(4.88,6.34)mmol/L vs 7.82(6.29,10.23)mmol/L;5.8%(5.60%,7.05%)vs 7.7%(6.50%,8.70%);2.07(1.66,2.76)mmol/L vs 2.55(2.22,3.18)mmol/L;1.15(0.95,1.58)mmol/L vs 1.79(1.28,2.52)mmol/L],差异均具有统计学意义(t=-2.802,P=0.006;Z=-2.794,P=0.001;Z=-2.794,P<0.001;Z=-1.588,P=0.006;Z=-2.684,P=0.001)。多因素Logistic回归分析显示CSVD总负荷评分(OR=4.536,95%CI:1.558~13.210,P=0.006)是PSCI重度认知障碍组的独立影响因素。认知训练后轻度认知障碍组MoCA及语言、抽象思维、延迟回忆改善较重度认知障碍组明显[4.0(3.0,4.5)分 vs 3.0(2.0,4.0)分;0(0,1.0)分 vs 0(0,1.0)分;1.0(0,1.0)分 vs 0(0,0)分1.0(0,1.0)分 vs 0(0,0)分],差异具有统计学意义(Z=-2.848、-3.900、-2.671、-3.044,P=0.004、<0.001、=0.008、0.002)。

结论

CSVD总负荷加重了PSCI;规律的认知训练可有效改善PSCI。

Objective

To investigate the difference in risk factors between mild and severe post-stroke cognitive impairment and the effect of regular cognitive training.

Methods

Patients with ischemic stroke, admitted to Zhongguancun Hospital in Beijing from January 2019 to April 2021, were included and classified as post-stroke severe cognitive impairment group (MoCA ≤15 points) and mild post-stoke Cognitive impairment group (MoCA >15 and ≤24 points). Univariate (t test、Wilcoxon rank sum test and χ2 test) and multivariate comparative regression analysis was used to compare the demographic data, biochemical parameters, medical history, location of stroke lesion, NHISS, and total cerebral small vascular disease (CSVD) load in the two groups. The enrolled patients were given regular cognitive training. MoCA test was performed again 3 months later to compare the effect before and after training.

Results

A total of 64 patients were enrolled, including 40 patients in the severe PSCI group and 24 in the mild PSCI group. Univariate analysis showed that age, NIHSS, homocysteine, CRP, and CSVD total load score were significantly higher in severe PSCI group than those in mild PSCI group [77.5(75.0, 81.0) years vs 70.0(66.0, 76.0) years; 7.5(2.5, 8.0) points vs 3.0(2.0, 5.0) points; 14.7(11.04, 19.35) μmol/L vs 12.29(9.57, 14.80) μmol/L; 3.61(0.97, 9.09) mmol/L vs 1.50(0.56, 3.45) mmol/L; 2.0(2.0, 3.0) points vs 1.0(0, 2.0) points], the differences were statistically significant (Z=-3.636, -2.742, -2.226, -2.207, 6.542; P<0.001, <0.001, =0.008, =0.001, <0.001). Hemoglobin, blood glucose, glycosylated hemoglobin, low density lipoprotein and triglyceride were significantly reduced [(122.25±17.32)g/L vs (134.46±16.09)g/L; 5.56(4.88, 6.34) mmol/L vs 7.82(6.29, 10.23) mmol/L; 5.8%(5.60%, 7.05%) vs 7.7%(6.50%, 8.70%); 2.07(1.66, 2.76) mmol/L vs 2.55(2.22, 3.18) mmol/L; 1.15(0.95, 1.58) mmol/L vs 1.79(1.28, 2.52) mmol/L], the differences were statistically significant (t=-2.802, P=0.006; Z=-2.794, P=0.001; Z=-2.794, P<0.001; Z=-1.588, P=0.006; Z=-2.684, P=0.001). Multivariate logistic regression analysis showed that CSVD score was an independent factor in the severe PSCI group (OR=4.536, 95%CI: 1.558~13.210, P=0.006). MoCA, language, abstraction and delayed recall improved significantly in the mild cognitive impairment group after cognitive training compared with the severe group [4.0(3.0, 4.5) score vs 3.0 (2.0, 4.0) score; 0(0, 1.0) score vs 0(0, 1.0) score; 1.0(0, 1.0) score vs 0(0, 0) score; 1.0(0, 1.0) score vs 0(0, 0) score], the differences were statistically significant (Z=-2.848, -3.900, -2.671, -3.044; P=0.004, <0.001, =0.008, 0.002).

Conclusion

CSVD score was an independent influencing factor of severe cognitive impairment. Regular cognitive training can effectively improve the level of cognitive impairment after stroke.

表1 PSCI重度组与PSCI轻度组一般资料比较
项目 重度认知障碍组(n=40例) 轻度认知障碍组(n=24例) 统计值 P
年龄[岁,MQR)] 77.5(75.0,81.0) 70.0(66.0,76.0) Z=-3.636 <0.001
男性[例(%)] 18(45.0) 14(58.3) χ2=1.067 0.219
文化程度[例(%)] χ2=2.115 0.132
文盲 6(15.0) 0(0.0)
小学 3(7.5) 2(8.3)
初中及以上 31(77.5) 22(91.7)
高血压[例(%)] 31(77.5) 20(83.3) χ2=0.315 0.411
糖尿病[例(%)] 18(47.5) 15(62.5) χ2=1.355 0.183
冠心病[例(%)] 9(22.5) 6(25.0) χ2=0.052 0.525
既往卒中[例(%)] 11(27.5) 6(25.0) χ2=0.048 0.534
吸烟史[例(%)] 8(20.0) 9(37.5) χ2=4.232 0.108
饮酒史[例(%)] 6(15.0) 4(16.7) χ2=0.032 0.562
入院时NIHSS评分[分,MQR)] 7.5(2.5,8.0) 3.0(2.0,5.0) Z=-2.742 <0.001
空腹血糖[mmol/L,MQR)] 5.56(4.88,6.34) 7.82(6.29,10.23) Z=-2.794 0.001
糖化血红蛋白[%,MQR)] 5.8(5.60,7.05) 7.7(6.50,8.70) Z=-2.794 <0.001
血红蛋白(g/L,
x¯
±s)
122.25±17.32 134.46±16.09 t=-2.802 0.006
HDL-C[mmol/L,MQR)] 1.0(0.91,1.10) 1.06(0.76,1.27) Z=-0.092 0.699
TG[mmol/L,MQR)] 1.15(0.95,1.58) 1.79(1.28,2.52) Z=-2.684 0.001
LDL-C[mmol/L,MQR)] 2.07(1.66,2.76) 2.55(2.22,3.18) Z=-1.588 0.006
同型半胱氨酸[μmol/L,MQR)] 14.7(11.04,19.35) 12.29(9.57,14.80) Z=-2.226 0.008
CRP[mmol/L,MQR)] 3.61(0.97,9.09) 1.50(0.56,3.45) Z=-2.207 0.001
左半球病灶[例(%)] 17(42.5) 11(45.8) χ2=0.068 0.499
幕上病灶[例(%)] 36(90.0) 21(87.5) χ2=0.096 0.529
CSVD总负荷评分[分,MQR)] 2.0(2.0,3.0) 1.0(0,2.0) Z=6.542 <0.001
表2 脑卒中后重度认知障碍的多因素Logistic回归分析
表3 训练前后轻度认知障碍组和重度认知障碍组认知测评分析[分,M(QR)]
1
GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016 [J]. Lancet, 2017, 390(10100): 1151-1210.
2
中国卒中学会血管性认知障碍分会. 卒中后认知障碍管理专家共识2021 [J]. 中国卒中杂志, 2021, 16(4): 376-389.
3
Ding MY, Xu Y, Wang YZ, et al. Predictors of cognitive impairment after stroke: a prospective stroke cohort study [J]. J Alzheimers Dis, 2019, 71(4): 1139-1151.
4
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国急性缺血性脑卒中诊治指南2018 [J]. 中华神经科杂志, 2018, 51(9): 666-682.
5
Staal J, Makin SD, Doubal FN, et al. Stroke subtype,vascular risk factors,and total MRI brain small-vessel disease burden [J]. Neurology, 2014, 83(14): 1288-1234.
6
Klarenbeek P, van Oostenbrugge RJ, Rouhl RP, et al. Ambulatory blood pressure in patients with lacunar stroke:asspciation with total MRI burden of cerebral small vessel disease [J]. Stroke, 2013, 44(11): 2995-2999.
7
Chen X, Wang J, Shan Y, et al. Cerebral small vessel disease :neuroimaging markers and clinical implication [J]. J Neurol, 2019, 266(10): 2347-2362.
8
Lu JH, Li D, Li F, et al. Montreal cognitive assessment in detecting cognitive impairment in Chinese elderly individuals: a population-based study [J]. J Geriatr Psychiatry Neurol, 2011, 24(4): 184-190.
9
Rasquin SM, Verhey FR, Van Oostenbrugge RJ, et al. Demographic and CT scan features related to cognitive impairment in the first year after stroke [J]. J Neurol Neurosurg Psychiatry, 2004, 75(11): 1562-1567.
10
Khedr EM, Hamed SA, El-Shereef HK, et al. Cognitive impairment after cerebrovascular stroke: Relationship to vascular risk factors [J]. Neuropsychiatr Dis Treat, 2009, 5: 103-116.
11
Guo J, Su W, Fang J, et al. Elevated CRP at admission predicts post-stroke cognitive impairment in Han Chinese patients with intracranial arterial stenosis [J]. Neurol Res, 2018, 40(4): 292-296.
12
Xu G, Dong X, Niu X, et al. Cognitive function and prognosis of multimodal neuroimage-guided thrombectomy on mild to moderate anterior circulation infarction patients with broadened therapeutic window: a prospective study [J]. Eur Neurol, 2017, 78(5-6): 257-263.
13
Liu ZH, Liu YT, Tu XJ, et al. High serum levels of malondialdehyde and 8-OHdG are both aossociated with early cognitive impairment in patients with acute ischaemic stroke [J]. Sci Rep, 2017, 7(1): 9493.
14
Fei M, Tianfeng W, Rujuan M, et al. Conversion of mild cognitive impairment to dementia among subjects with diabetes: a population-based study of incidenceand risk factors with five years of follow-up [J]. J Alzheimers Dis, 2015, 43(4): 1441-1449.
15
Mok V, Xiong Y, Wong KK, et al. Predictors for cognitive decline in patients with confluent white matter hyperintensities [J]. Alzheimers Dement, 2012, 8(5 Suppl): S96-S103.
16
Kandiah N, Wiryasaputra L, Narasimhalu K, et al. Frontal subcortical ischemia is crucial for post stroke cognitive impairment [J]. J Neurol Sci, 2011, 309(1-2): 92-95.
17
Zhang M, Chen M, Wang Q, et al. Relationship between cerebral microbleeds and cognitive function in lacunar infarct [J]. J Int Med Res, 2013, 41(2): 347-355.
18
Huijts M, Duits A, Staals J, et al. Basal ganglia enlarged perivascular spaces are linked to cognitive function in patients with cerebral small vessel disease [J]. Curr Neurovasc Res, 2014, 11(2): 136-141.
19
Zhang J, Han F, Liang X, et al. Lacune and large perivascular space: Two kinds of cavities are of different risk factors and stroke risk [J]. Cerebrovasc Dis, 2020, 49(5): 522-530.
20
Jiang Y, Wang Y, Yuan Z, et al. Total cerebral small vessel disease burden is related to worse performance on the mini-mental state examination and incident dementia: a prospective 5-year follow-up [J]. J Alzheimers Dis, 2019, 69(1): 253-262.
21
Gooding AL, Choi J, Fiszdon JM, et al. Comparing three methods of computerized cognitive training for older adults with subclincal cognitive decline [J]. Neuropsychol Rehabil, 2016, 26(5/6): 810-821.
22
韩晔, 刘敏, 周盛年, 等. 计算机辅助认知康复训练治疗脑梗死后执行功能障碍的疗效观察 [J]. 中华物理医学与康复杂志, 2018, 40(7): 544-546.
[1] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[2] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[3] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[4] 罗文斌, 韩玮. 胰腺癌患者首次化疗后中重度骨髓抑制的相关危险因素分析及预测模型构建[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 357-362.
[5] 贺斌, 马晋峰. 胃癌脾门淋巴结转移危险因素[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 694-699.
[6] 林凯, 潘勇, 赵高平, 杨春. 造口还纳术后切口疝的危险因素分析与预防策略[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 634-638.
[7] 杨闯, 马雪. 腹壁疝术后感染的危险因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 693-696.
[8] 周艳, 李盈, 周小兵, 程发辉, 何恒正. 不同类型补片联合Nissen 胃底折叠术修补食管裂孔疝的疗效及复发潜在危险因素[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 528-533.
[9] 张伟伟, 陈启, 翁和语, 黄亮. 随机森林模型预测T1 期结直肠癌淋巴结转移的初步研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 389-393.
[10] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[11] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[12] 李文哲, 王毅, 崔建, 郑启航, 王靖彦, 于湘友. 新疆维吾尔自治区重症患者急性肾功能异常的危险因素分析[J/OL]. 中华卫生应急电子杂志, 2024, 10(05): 269-276.
[13] 刘志超, 胡风云, 温春丽. 山西省脑卒中危险因素与地域的相关性分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 424-433.
[14] 赵伟伟, 赵玉华, 刘小璇. 西藏地区亚甲基四氢叶酸还原酶C677T多态性及其与脑微出血的相关性[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 473-478.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要