切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 26 -30. doi: 10.11817/j.issn.1673-9248.2023.01.005

临床研究

人工智能辅助CT血管成像脑血管重建在基层医院颅内动脉瘤诊断中的应用
付永鹏1, 拉巴索朗1, 马强1, 陈群超1, 郑裕峰2, 吴蕻2, 郑圆杰3, 胡婧3, 于洮4,(), 张东5   
  1. 1. 850000 拉萨,拉萨市人民医院神经外科
    2. 100085 北京,北京智像科技有限公司
    3. 102299 北京,数坤(北京)网络科技股份有限公司
    4. 850000 拉萨,拉萨市人民医院神经外科;100050 北京,首都医科大学附属北京天坛医院,北京市神经外科研究所
    5. 100050 北京,首都医科大学附属北京天坛医院,北京市神经外科研究所
  • 收稿日期:2022-05-25 出版日期:2023-02-01
  • 通信作者: 于洮
  • 基金资助:
    国家重点研发计划(2021YFC2500500); 首都卫生发展科研专项(2022-2-1075); 西藏自治区自然科学基金组团式医学援藏项目(XZ2022ZR-ZY19(Z))

Application of artificial intelligence-assisted vascular reconstruction in diagnosis of intracranial aneurysms in Tibet

Yongpeng Fu1, La ba suo lang1, Qiang Ma1, Qunchao Chen1, Yufeng Zheng2, Hong Wu2, Yuanjie Zheng3, Jing Hu3, Tao Yu4,(), Dong Zhang5   

  1. 1. Department of Neurosurgery, People's Hospital of Lhasa, Lhasa 850000, China
    2. Beijing Telezx Technology Co., Ltd, Beijing 100085, China
    3. Shukun (Beijing) Technology Co., Ltd, Beijing 102299, China
    4. Department of Neurosurgery, People's Hospital of Lhasa, Lhasa 850000, China; Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Institute of Neurosurgery, 100050 Beijing, China
    5. Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Institute of Neurosurgery, 100050 Beijing, China
  • Received:2022-05-25 Published:2023-02-01
  • Corresponding author: Tao Yu
引用本文:

付永鹏, 拉巴索朗, 马强, 陈群超, 郑裕峰, 吴蕻, 郑圆杰, 胡婧, 于洮, 张东. 人工智能辅助CT血管成像脑血管重建在基层医院颅内动脉瘤诊断中的应用[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(01): 26-30.

Yongpeng Fu, La ba suo lang, Qiang Ma, Qunchao Chen, Yufeng Zheng, Hong Wu, Yuanjie Zheng, Jing Hu, Tao Yu, Dong Zhang. Application of artificial intelligence-assisted vascular reconstruction in diagnosis of intracranial aneurysms in Tibet[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2023, 17(01): 26-30.

目的

探讨人工智能辅助CT血管成像(CTA)在西藏地区颅内动脉瘤诊治中的应用价值。

方法

回顾性分析2021年8月至2022年4月拉萨市人民医院神经外科收治的26例颅内动脉瘤患者。所有患者均于24 h内行CTA检查,数据分别使用人工智能辅助和人工方法进行脑血管三维重建,比较2种方法的重建时间、诊断结果、图像质量。采用独立样本t检验比较人工智能重建组和人工重建组重建时间和图像评分的差异,采用χ2检验比较疾病诊断准确性的差异。

结果

人工智能重建组动脉瘤位置诊断准确性为92.3%(24/26),人工重建组准确性为96.2%(25/26),2组差异无统计学意义(P>0.05)。人工智能重建组CTA重建所需时间显著低于人工重建组[(24.2±11.8)min vs (94.7±42.0)min],差异具有统计学意义(t=-8.82,P<0.001)。人工智能重建组图像评分高于人工重建组[(4.53±0.58)分 vs (3.46±0.94)分],差异具有统计学意义(t=4.24,P<0.001)。

结论

人工智能辅助CTA脑血管重建成像技术较人工重建更快速,显示动脉瘤情况更满意,适合在基层医院应用。

Objective

To investigate the application value of artificial intelligence (AI)-assisted CT angiography (CTA) in diagnosing and treating intracranial aneurysms in Tibet.

Methods

The author retrospectively reviewed 26 patients diagnosed with intracranial aneurysms admitted to the Department of Neurosurgery of Lhasa People's Hospital from October 2021 to April 2022. All patients underwent CTA examination within 24 hours after admission. The data were reconstructed using both AI-assisted and manual methods for 3D reconstruction of cerebral blood vessels, respectively. The variables of reconstruction time, diagnostic accuracy, and image quality between two groups were compared. Independent samples t-test was used for continuous variables, and chi-square test for categorical samples.

Results

The diagnostic accuracy of the aneurysm was 92.3%(24/26) in the AI group and 96.2%(25/26) in the manual group, reaching no significant difference between two groups (P>0.05). The time interval required for CTA reconstruction was 24.2±11.8 minutes in the AI-assisted group, which was significantly lower than 94.7±42.0 minutes in the manual group (t=-8.82, P<0.001). The reconstruction quality score of the AI group was 4.53±0.58, and that of the manual group was 3.46±0.94. The AI group was significantly better than the artificial group (t=4.24, P<0.001).

Conclusion

AI-assisted CTA cerebral vascular reconstruction imaging technology is faster than manual reconstruction, and shows more satisfactory aneurysm condition, which is suitable for promotion in primary hospitals.

图1 CTA图像上传智像AI工作站计算过程示意图 注:CTA为CT血管成像,PACS为影像归档和通信系统,AI为人工智能
表1 人工智能重建组和人工重建组的CT血管成像准确性、重建时间和重建质量比较
图2 CT血管成像颅内血管三维重建对比。CT扫描多平面重建相显示右侧大脑中动脉动脉瘤(图a)。北京远程智像系统人工智能重建(图b)可多方位显示动脉瘤载瘤动脉、血管关系、子瘤等信息。拉萨市人民医院的颅内血管人工重建(图c)显示的动脉瘤层面较少
1
Gathier CS, Dankbaar JW, van der Jagt M, et al. Effects of induced hypertension on cerebral perfusion in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a randomized clinical trial [J]. Stroke, 2015, 46(11): 3277-3281.
2
Macdonald RL, Schweizer TA. Spontaneous subarachnoid haemorrhage [J]. Lancet, 2017, 389(10069): 655-666.
3
Westerlaan HE, van Dijk JM, Jansen-van der Weide MC, et al. Intracranial aneurysms in patients with subarachnoid hemorrhage: CT angiography as a primary examination tool for diagnosis-systematic review and meta-analysis [J]. Radiology, 2011, 258(1): 134-145.
4
Fu F, Wei J, Zhang M, et al. Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network [J]. Nat Commun, 2020, 11(1): 4829.
5
Boos J, Fang J, Heidinger BH, et al. Dual energy CT angiography: pros and cons of dual-energy metal artifact reduction algorithm in patients after endovascular aortic repair [J]. Abdom Radio (NY), 2017, 42(3): 749-758.
6
康慧斌, 刘爱华, 李佑祥, 等. 影响颅内动脉瘤破裂的临床危险因素分析 [J]. 中华神经外科杂志, 2018, 34(10): 1012-1016.
7
Sun H, Li W, Ma J, et al. CT perfusion diagnoses delayed cerebral ischemia in the early stage of the time-window after aneurysmal subarachnoid hemorrhage [J]. J Neuroradiol, 2017, 44(5): 313-318.
8
Vakil P, Ansari SA, Cantrell CG, et al. Quantifying intracranial aneurysm wall permeability for risk assessment using dynamic contrast-enhanced MRI: a pilot study [J]. AJNR Am J Neuroradiol, 2015, 36(5): 953-959.
9
刘建民. 颅内动脉瘤的血管内治疗——从血管重建到血流重构 [J]. 中华神经外科杂志, 2019, 35(9): 865-867.
10
Saxena A, Eyk N, Lim ST. Imaging modalities to diagnose carotid artery stenosis: progress and prospect [J]. Biomed Eng Online, 2019, 18(1): 66.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[3] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[4] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[5] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[6] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[7] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[8] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[9] 苏博兴, 肖博, 李建兴. 2024年美国泌尿外科学会年会结石领域手术治疗相关热点研究及解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 303-308.
[10] 莫林键, 杨舒博, 农卫赟, 程继文. 人工智能虚拟数字医师在钬激光前列腺剜除日间手术患教管理中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 318-322.
[11] 阮星星, 黄智渊, 刘芙香, 狄金明. 从临床医师诊治患者的思路出发撰写临床研究论文[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 397-401.
[12] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[13] 唐必英, 李钢. 治疗时机对动脉瘤性蛛网膜下腔出血患者预后的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 213-219.
[14] 李晓东, 王汉宇, 马龙, 刘亮, 魏云, 李昂. 小脑后下动脉瘤的显微手术治疗[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 318-320.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?