切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (03) : 275 -279. doi: 10.11817/j.issn.1673-9248.2023.03.014

综述

数字技术评估方法在神经系统运动障碍诊疗中应用的研究进展
韩佳熙, 范向民, 苏宁()   
  1. 200025 上海交通大学医学院
    100190 北京,中国科学院软件研究所
    100730 中国医学科学院北京协和医院神经内科
  • 收稿日期:2023-04-05 出版日期:2023-06-01
  • 通信作者: 苏宁
  • 基金资助:
    国家自然科学青年基金项目(81901224); 2022年北京协和医院中央高水平医院临床科研专项项目(2022-PUMCH-A-256)

The usage of digital technology evaluation methods in the diagnosis and treatment of neurologic movement disorders

Jiaxi Han, Xiangmin Fan, Ning Su()   

  1. Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
    Institute of software, Chinese academy of sciences, Beijing 100190, China
    Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
  • Received:2023-04-05 Published:2023-06-01
  • Corresponding author: Ning Su
引用本文:

韩佳熙, 范向民, 苏宁. 数字技术评估方法在神经系统运动障碍诊疗中应用的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 275-279.

Jiaxi Han, Xiangmin Fan, Ning Su. The usage of digital technology evaluation methods in the diagnosis and treatment of neurologic movement disorders[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2023, 17(03): 275-279.

运动功能和眼动是神经系统功能的重要体现,神经功能受损可反映神经控制环路的破坏,在特定疾病状态下,早期识别神经功能受损对疾病诊断、疾病进展预测及预后判断具有重要意义。在神经系统评估方面,数字技术评估方法克服了传统评估方法的缺点,使神经系统运动功能评估取得了里程碑式进步。相较于临床量表,数字技术可以去除主观因素的影响,并将运动过程定量化,从多空间、多维度、多时相捕捉运动特征,为研究特定疾病背景下的特定运动特征提供新技术手段。目前多种数字技术已经被应用于定量神经功能评定,此类技术包括传感器技术和视频技术,可以捕捉运动的细微之处。检测眼部运动的此类技术包括眼电图技术和眼球追踪技术,可以精确追踪眼球活动,量化眼球运动,使临床可以精确、快捷地观察眼部运动。这些技术加深了对神经系统疾病运动特征的传统认知并捕捉到了新的运动特征。本文列举了运动和眼动定量数字评估技术在神经系统疾病诊断方面的应用及其量化的细节和得到的结论。

Motor functions and eye movements are essential manifestations of the nervous system function, and their impairment can reflect damage to neural control circuits. The early detection of neurological disorders is of great significance for disease diagnosis and prediction of disease progression and prognosis. The development of digital technology has overcome the shortcomings of traditional assessment of neurological-related motor function, which can be called a milestone progression. Digital technology provides new technic for evaluation of motion characteristics in certain diseases. Compared to the clinical scale, digital technic can eliminate the subjective factors and capture quantized motion features at multi-space, multi-dimension, and multi-time phases. Multiple technologies have already been used in quantitative neurological assessment, including sensor technology and video technology, which can capture the subtleties of body movements; electro-oculogram technology and eye-tracking technology, which can capture quantized eye movements. These technologies deepen the traditional understanding of the motor features of neurological diseases and capture new motor features.

1
国务院第七次全国人口普查领导小组办公室. 2020年第七次全国人口普查主要数据 [M]. 北京: 中国统计出版社, 2021: 92-93.
2
Chan KY, Wang W, Wu JJ, et al. Epidemiology of Alzheimer's disease and other forms of dementia in China, 1990-2010: a systematic review and analysis [J]. Lancet, 2013, 381(9882): 2016-2023.
3
Dorsey ER, Sherer T, Okun MS, et al. The emerging evidence of the Parkinson pandemic [J]. J Parkinsons Dis, 2018, 8(s1): S3-S8.
4
Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review [J]. JAMA, 2020, 323(6): 548-560.
5
Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease [J]. Lancet, 2021, 397(10284): 1577-1590.
6
Snijders AH, Van De Warrenburg BP, Giladi N, et al. Neurological gait disorders in elderly people: clinical approach and classification [J]. Lancet Neurol, 2007, 6(1): 63-74.
7
Axer H, Axer M, Sauer H, et al. Falls and gait disorders in geriatric neurology [J]. Clin Neurol Neurosurg, 2010, 112(4): 265-274.
8
Leritz EC, Mcglinchey RE, Kellison I, et al. Cardiovascular disease risk factors and cognition in the elderly [J]. Curr Cardiovasc Risk Rep, 2011, 5(5): 407-412.
9
Heiland EG, Welmer AK, Kalpouzos G, et al. Cerebral small vessel disease, cardiovascular risk factors, and future walking speed in old age: a population-based cohort study [J]. BMC Neurol, 2021, 21(1): 496.
10
Wang Z, Cui K, Song R, et al. Influence of cardiovascular risk burden on motor function among older adults: mediating role of cardiovascular diseases accumulation and cognitive decline [J]. Front Med (Lausanne), 2022, 9: 856260.
11
Schmitz-Hübsch T, Du Montcel ST, Baliko L, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale [J]. Neurology, 2006, 66(11): 1717-1720.
12
Regnault A, Boroojerdi B, Meunier J, et al. Does the MDS-UPDRS provide the precision to assess progression in early Parkinson's disease? Learnings from the Parkinson's progression marker initiative cohort [J]. J Neurol, 2019, 266(8): 1927-1936.
13
Pouget P. The cortex is in overall control of 'voluntary' eye movement [J]. Eye (Lond), 2015, 29(2): 241-245.
14
Kassavetis P, Kaski D, Anderson T, et al. Eye movement disorders in movement disorders [J]. Mov Disord Clin Pract, 2022, 9(3): 284-295.
15
Steinhubl SR, Muse ED, Topol EJ. The emerging field of mobile health [J]. Sci Transl Med, 2015, 7(283): 283rv3.
16
邹亚, 汪丰, 高帅锋, 等. 基于可穿戴系统的PD病人运动功能评价系统 [J]. 中国医疗设备, 2015, 80(3): 10-14.
17
乔子晏. 基于惯性传感器的PD患者运动功能评价的研究 [D]. 南京: 东南大学, 2016.
18
徐恩平. 基于视频序列的人体运动功能分析 [D]. 武汉: 华中科技大学, 2007.
19
Moore ST, Dilda V, Hakim B, et al. Validation of 24-hour ambulatory gait assessment in Parkinson's disease with simultaneous video observation [J]. Biomed Eng Online, 2011, 10: 82.
20
Ban S, Lee YJ, Kim KR, et al. Advances in materials, sensors, and integrated systems for monitoring eye movements [J]. Biosensors (Basel), 2022, 12(11): 1039.
21
Mishra S, Norton JJS, Lee Y, et al. Soft, conformal bioelectronics for a wireless human-wheelchair interface [J]. Biosens Bioelectron, 2017, 91: 796-803.
22
Cognolato M, Atzori M, Muller H. Head-mounted eye gaze tracking devices: An overview of modern devices and recent advances [J]. J Rehabil Assist Technol Eng, 2018, 5: 2055668318773991.
23
Plotnik M, Giladi N, Hausdorff JM. A new measure for quantifying the bilateral coordination of human gait: effects of aging and Parkinson's disease [J]. Exp Brain Res, 2007, 181(4): 561-570.
24
Plotnik M, Giladi N, Hausdorff JM. Bilateral coordination of gait and Parkinson's disease: the effects of dual tasking [J]. J Neurol Neurosurg Psychiatry, 2009, 80(3): 347-350.
25
Shah VV, Rodriguez-Labrada R, Horak FB, et al. Gait variability in spinocerebellar ataxia assessed using wearable inertial sensors [J]. Mov Disord, 2021, 36(12): 2922-2931.
26
Lee J, Oubre B, Daneault JF, et al. Analysis of gait sub-movements to estimate ataxia severity using ankle inertial data [J]. IEEE Trans Biomed Eng, 2022, 69(7): 2314-2323.
27
Krishna R, Pathirana PN, Horne M, et al. Quantitative assessment of cerebella ataxia, through automated limb-coordination tests [J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019, 2019: 6850-6853.
28
Rabinowitz I, Lavner Y. Association between finger tapping, attention, memory, and cognitive diagnosis in elderly patients [J]. Percept Mot Skills, 2014, 119(1): 259-278.
29
Verghese J, Robbins M, Holtzer R, et al. Gait dysfunction in mild cognitive impairment syndromes [J]. J Am Geriatr Soc, 2008, 56(7): 1244-1251.
30
Weiss A, Herman T, Plotnik M, et al. Can an accelerometer enhance the utility of the Timed Up & Go Test when evaluating patients with Parkinson's disease? [J]. Med Eng Phys, 2010, 32(2): 119-125.
31
Huang X, Mahoney JM, Lewis MM, et al. Both coordination and symmetry of arm swing are reduced in Parkinson's disease [J]. Gait Posture, 2012, 35(3): 373-377.
32
Stricker M, Hinde D, Rolland A, et al. Quantifying step length using two-dimensional video in individuals with Parkinson's disease [J]. Physiother Theory Pract, 2021, 37(1): 252-255.
33
Tran H, Pathirana PN, Horne M, et al. Automated finger chase (ballistic tracking) in the assessment of cerebellar ataxia [J]. Annu Int Conf IEEE Eng Med Biol Soc, 2018, 2018: 3521-3524.
34
Hong R, Zhang T, Zhang Z, et al. A summary index derived from Kinect to evaluate postural abnormalities severity in Parkinson's disease patients [J]. NPJ Parkinsons Dis, 2022, 8(1): 96.
35
Ospina BM, Chaparro JAV, Paredes JDA, et al. Objective arm swing analysis in early-stage Parkinson's disease using an RGB-D camera (Kinect(R)) [J]. J Parkinsons Dis, 2018, 8(4): 563-570.
36
Seifallahi M, Mehraban AH, Galvin JE, et al. Alzheimer's disease detection using comprehensive analysis of Timed Up and Go Test via Kinect V.2 camera and machine learning [J]. IEEE Trans Neural Syst Rehabil Eng, 2022, 30: 1589-1600.
37
Mak MK, Levin O, Mizrahi J, et al. Joint torques during sit-to-stand in healthy subjects and people with Parkinson's disease [J]. Clin Biomech (Bristol, Avon), 2003, 18(3): 197-206.
38
Elgendi M, Picon F, Magnenat-Thalmann N, et al. Arm movement speed assessment via a Kinect camera: a preliminary study in healthy subjects [J]. Biomed Eng Online, 2014, 13: 88.
39
Dubois A, Mouthon A, Sivagnanaselvam RS, et al. Fast and automatic assessment of fall risk by coupling machine learning algorithms with a depth camera to monitor simple balance tasks [J]. J Neuroeng Rehabil, 2019, 16(1): 71.
40
Bylsma FW, Rasmusson DX, Rebok GW, et al. Changes in visual fixation and saccadic eye movements in Alzheimer's disease [J]. Int J Psychophysiol, 1995, 19(1): 33-40.
41
Meziane N, Webster JG, Attari M, et al. Dry electrodes for electrocardiography [J]. Physiol Meas, 2013, 34(9): R47-R69.
42
Jia Y, Tyler CW. Measurement of saccadic eye movements by electrooculography for simultaneous EEG recording [J]. Behav Res Methods, 2019, 51(5): 2139-2151.
43
Robinson DA. The mechanics of human smooth pursuit eye movement [J]. J Physiol, 1965, 180(3): 569-591.
44
Bozhkova VP, Surovicheva NS, Nikolaev DP, et al. Smooth pursuit in elderly adults studied with apparent motion [J]. Perception, 2015, 44(8-9): 1040-1053.
45
Crawford TJ, Higham S, Mayes J, et al. The role of working memory and attentional disengagement on inhibitory control: effects of aging and Alzheimer's disease [J]. Age (Dordr), 2013, 35(5): 1637-1650.
[1] 丁妍, 文华轩, 陈芷萱, 曾晴, 张梦雨, 廖伊梅, 罗丹丹, 秦越, 梁美玲, 邹于, 李胜利. 胎儿小脑皮质发育不良的产前超声诊断[J]. 中华医学超声杂志(电子版), 2023, 20(03): 255-264.
[2] 万欣, 贺秋霞, 李明明, 王守志, 陈曦, 杨秀华. 超声衰减成像技术评价肝脂肪变性的相关因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(01): 57-62.
[3] 丁妍, 文华轩, 张梦雨, 陈思齐, 温昕, 彭桂艳, 曾晴, 罗丹丹, 廖伊梅, 秦越, 梁美玲, 李胜利. 胎儿小脑表面叶裂的产前超声研究[J]. 中华医学超声杂志(电子版), 2023, 20(01): 14-22.
[4] 李玉静, 陈七一, 谢汝明, 陈步东. 获得性免疫缺陷综合征相关原发性中枢神经系统淋巴瘤的预后研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 200-208.
[5] 张辉, 蔡敏, 黄湘雅. 数字化技术和人工智能在上颌窦底提升术的临床应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 244-252.
[6] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[7] 金浪, 石洁, 黄正, 贾永伟, 张建坡, 魏礼成, 金昊雷. 3D打印数字技术辅助改良交叉PVP对重度骨质疏松性椎体压缩骨折脊柱-骨盆矢状面平衡状态的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 263-268.
[8] 侯牧韶, 刘子渤, 李红玲. 局部振动疗法治疗脑卒中后运动障碍的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 246-250.
[9] 肖庆, 王诚, 周焜, 魏宜功. 脑-机接口的技术原理及临床应用[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 241-245.
[10] 吴绍伟. 迷走神经电刺激术治疗神经系统疾病的应用进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 180-184.
[11] 杨团峰, 王艳香, 刘献增. 球海绵体肌反射在神经系统疾病中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 600-604.
[12] 孟智宏. 醒脑开窍针刺法治疗多系统疾病的机制研究现状[J]. 中华针灸电子杂志, 2023, 12(04): 142-145.
[13] 丁文华, 王育伟, 邱景景, 杨琼, 耿玉荣. 脑小血管病影像学标志物与运动障碍研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 429-434.
[14] 李安, 张秀萍, 白波, 赵阳, 薛国芳, 李东芳. 主动脉夹层术后并发神经系统并发症二例及文献复习[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 373-378.
[15] 张丁丁, 张江霞, 苏宁, 徐运, 汪凯, 许予明, 李震中, 胡波, 王丽华, 吴波, 楚兰, 汪银洲, 江泓, 陆正齐, 武剑, 范向民, 韩菲, 姚明, 周立新, 倪俊, 田丰, 袁晶, 朱以诚. 中国认知正常成年人数字化认知常模制定的全国多中心临床研究[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 179-199.
阅读次数
全文


摘要