切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 429 -434. doi: 10.11817/j.issn.1673-9248.2023.05.001

专家论坛

脑小血管病影像学标志物与运动障碍研究进展
丁文华, 王育伟, 邱景景, 杨琼, 耿玉荣()   
  1. 832000 新疆石河子,石河子大学第一附属医院神经内科
    100191 北京,北京大学第三医院神经内科
  • 收稿日期:2023-08-13 出版日期:2023-10-01
  • 通信作者: 耿玉荣
  • 基金资助:
    国家自然科学基金(81901204); 2022年度兵团指导性科技计划项目(2022ZD029)

Research progress on imaging biomarkers and motor dysfunction in cerebral small vessel disease

Wenhua Ding, Yuwei Wang, Jingjing Qiu, Qiong Yang, Yurong Geng()   

  1. Department of Neurology, the First Affiliated Hospital Of Shihezi University, Shihezi 832000, China
    Department of Neurology, Peking University Third Hospital, Beijing 100191, China
  • Received:2023-08-13 Published:2023-10-01
  • Corresponding author: Yurong Geng
引用本文:

丁文华, 王育伟, 邱景景, 杨琼, 耿玉荣. 脑小血管病影像学标志物与运动障碍研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 429-434.

Wenhua Ding, Yuwei Wang, Jingjing Qiu, Qiong Yang, Yurong Geng. Research progress on imaging biomarkers and motor dysfunction in cerebral small vessel disease[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2023, 17(05): 429-434.

磁共振成像是诊断脑小血管病的首选影像学检查方法,主要表现包括近期皮层下小梗死、可能为血管起源的腔隙性梗死、可能为血管起源的脑白质高信号、血管周围间隙、脑微出血、脑皮质表面铁沉积、微梗死以及脑萎缩,上述影像学表现常同时或相继出现。近年来研究者们提出了“小血管病总评分”,即将脑小血管病不同的磁共振成像标志物组合成一个测量指标,通过影像学标志物总负荷评估更加准确地捕捉来自脑小血管病的全部脑损伤。运动障碍是脑小血管病患者疾病后期主要临床负担,关于脑小血管病标志物与运动障碍的研究备受关注。本研究旨在对脑小血管病运动障碍产生机制、各影像学标志物与运动障碍关联、新兴影像学评估方法等进行概述,以期提高广大研究者及临床医师对脑小血管病影像学标志物与运动障碍关系的认识,有利于今后临床和科研工作的推进。

Magnetic resonance imaging is the preferred imaging examination method for the diagnosis of cerebral small vessel disease. Its main manifestations include recent small subcortical infarct, lacune (of presumed vascular origin), white matter hyperintensity (of presumed vascular origin) , perivascular space, cerebral microbleed, cortical superficial siderosis, brain atrophy, and cortical cerebral microinfarct. The above imaging manifestations often occur simultaneously or successively. In recent years, researchers have proposed a "total small vessel diseases score", that is, combining different magnetic resonance imaging markers of small cerebral vascular diseases into a measurement index, which is more accurate capture of all brain injuries from cerebrovascular diseases through the assessment of total burden of imaging markers. Movement dysfunction are the main clinical burden for patients with cerebrovascular diseases in the later stage. Research on cerebrovascular imaging markers and movement disorders has received great attention. This study aims to provide an overview of the mechanism of movement disorders in cerebral small vessel disease, the association between various imaging markers and movement disorders, and emerging imaging evaluation methods. It is desirable for researchers and clinical physicians will have an understanding of the relationship between cerebrovascular imaging markers and movement disorders, which will be beneficial for future clinical and scientific research work.

1
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国脑小血管病诊治指南2020 [J]. 中华神经科杂志, 2022, 55(8): 807-818.
2
Duering M, Biessels GJ, Brodtmann A, et al. Neuroimaging standards for research into small vessel disease-advances since 2013 [J]. Lancet Neurol, 2023, 22(7): 602-618.
3
Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease [J]. Neuron, 2017, 96(1): 17-42.
4
Shi Y, Wardlaw JM. Update on cerebral small vessel disease: a dynamic whole-brain disease [J]. Stroke Vasc Neurol, 2016, 1(3): 83-92.
5
Rensma SP, van Sloten TT, Launer LJ, et al. Cerebral small vessel disease and risk of incident stroke, dementia and depression, and all-cause mortality: a systematic review and meta-analysis [J]. Neurosci Biobehav Rev, 2018, 90: 164-173.
6
Nylander R, Fahlström M, Rostrup E, et al. Quantitative and qualitative MRI evaluation of cerebral small vessel disease in an elderly population: a longitudinal study [J]. Acta Radiol, 2018, 59(5): 612-618.
7
Yang Q, Yang Y, Li C, et al. Quantitative assessment and correlation analysis of cerebral microbleed distribution and leukoaraiosis in stroke outpatients [J]. Neurol Res, 2015, 37(5): 403-409.
8
马佳丽, 王玉青, 王恺闻, 等. 脑小血管病总负荷的影响因素探索及临床预测模型建立[J]. 中国卒中杂志, 2022, 17(5): 523-528.
9
Pinter D, Ritchie SJ, Doubal F, et al. Impact of small vessel disease in the brain on gait and balance [J]. Sci Rep, 2017, 7: 41637.
10
de Laat KF, van Norden AG, Gons RA, et al. Cerebral white matter lesions and lacunar infarcts contribute to the presence of mild parkinsonian signs [J]. Stroke, 2012, 43(10): 2574-2579.
11
Verghese J, LeValley A, Hall CB, et al. Epidemiology of gait disorders in community-residing older adults [J]. J Am Geriatr Soc, 2006, 54(2): 255-261.
12
Ma R, Zhào H, Wei W, et al. Gait characteristics under single-/dual-task walking conditions in elderly patients with cerebral small vessel disease: analysis of gait variability, gait asymmetry and bilateral coordination of gait [J]. Gait Posture, 2022, 92: 65-70.
13
牛世芹, 秦伟, 杨淑娜, 等. 脑小血管病导致运动障碍的研究进展 [J]. 中华老年心脑血管病杂志, 2019, 21(6): 670-672.
14
宗黎霞, 姜坤, 崔丽英, 等. 57例脑小血管病患者步态及平衡障碍特征分析 [J]. 中国卒中杂志, 2015, 10(12): 1000-1005.
15
van der Holst HM, Tuladhar AM, Zerbi V, et al. White matter changes and gait decline in cerebral small vessel disease [J]. Neuroimage Clin, 2017, 17: 731-738.
16
Srikanth V, Beare R, Blizzard L, et al. Cerebral white matter lesions, gait, and the risk of incident falls: a prospective population-based study [J]. Stroke, 2009, 40(1): 175-180.
17
McIsaac TL, Fritz NE, Quinn L, et al. Cognitive-motor interference in neurodegenerative disease: a narrative review and implications for clinical management [J]. Front Psychol, 2018, 9: 2061.
18
Jokinen H, Laakso HM, Ahlström M, et al. Synergistic associations of cognitive and motor impairments with functional outcome in covert cerebral small vessel disease [J]. Eur J Neurol, 2022, 29(1): 158-167.
19
Braun M, Vaibhav K, Saad NM, et al. White matter damage after traumatic brain injury: a role for damage associated molecular patterns [J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(10 Pt B): 2614-2626.
20
Armstrong RC, Mierzwa AJ, Sullivan GM, et al. Myelin and oligodendrocyte lineage cells in white matter pathology and plasticity after traumatic brain injury [J]. Neuropharmacology, 2016, 110(Pt B): 654-659.
21
Kim YJ, Kwon HK, Lee JM, et al. Gray and white matter changes linking cerebral small vessel disease to gait disturbances [J]. Neurology, 2016, 86(13): 1199-1207.
22
de Laat KF, van Norden AG, Gons RA, et al. Gait in elderly with cerebral small vessel disease [J]. Stroke, 2010, 41(8): 1652-1658.
23
Srikanth V, Beare R, Blizzard L, et al. Cerebral white matter lesions, gait, and the risk of incident falls: a prospective population-based study [J]. Stroke, 2009, 40(1): 175-180.
24
Gao Y, Li D, Lin J, et al. Cerebral small vessel disease: Pathological mechanisms and potential therapeutic targets [J]. Front Aging Neurosci, 2022, 14: 961661.
25
Ved R, Sharouf F, Harari B, et al. Disulfide HMGB1 acts via TLR2/4 receptors to reduce the numbers of oligodendrocyte progenitor cells after traumatic injury in vitro [J]. Sci Rep, 2021, 11(1): 6181.
26
Choi JY, Kim BG. Toll-like receptor 2: a novel therapeutic target for ischemic white matter injury and oligodendrocyte death [J]. Exp Neurobiol, 2017, 26(4): 186-194.
27
Ved R, Manivannan S, Tasker I, et al. High mobility group box protein 1 and white matter injury following traumatic brain injury: perspectives on mechanisms and therapeutic strategies [J]. Neural Regen Res, 2022, 17(8): 1739-1740.
28
Jokinen H, Gouw AA, Madureira S, et al. Incident lacunes influence cognitive decline: the LADIS study [J]. Neurology, 2011, 76(22): 1872-1878.
29
Smith EE, O'Donnell M, Dagenais G, et al. Early cerebral small vessel disease and brain volume, cognition, and gait [J]. Ann Neurol, 2015, 77(2): 251-261.
30
Wang N, Allali G, Kesavadas C, et al. Cerebral small vessel disease and motoric cognitive risk syndrome: results from the Kerala-Einstein Study [J]. J Alzheimers Dis, 2016, 50(3): 699-707.
31
Takakusaki K. Neurophysiology of gait: from the spinal cord to the frontal lobe [J]. Mov Disord, 2013, 28(11): 1483-1491.
32
Tabara Y, Okada Y, Ohara M, et al. Association of postural instability with asymptomatic cerebrovascular damage and cognitive decline: the Japan Shimanami health promoting program study [J]. Stroke, 2015, 46(1): 16-22.
33
Soumaré A, Elbaz A, Zhu Y, et al. Whitematterlesionsvolume and motor performances in the elderly [J]. Ann Neurol, 2009, 65(5): 706-715.
34
Su N, Zhai FF, Zhou LX, et al. Cerebral small vessel disease burden is associated with motor performance of lower and upper extremities in community-dwelling populations [J]. Front Aging Neurosci, 2017, 9: 313.
35
Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation [J]. Lancet Neurol, 2009, 8(2): 165-174.
36
Fisher M, French S, Ji P, et al. Cerebral microbleeds in the elderly: a pathological analysis [J]. Stroke, 2010, 41(12): 2782-2785.
37
Ungvari Z, Tarantini S, Kirkpatrick AC, et al. Cerebral microhemorrhages: mechanisms, consequences, and prevention [J]. Am J Physiol Heart Circ Physiol, 2017, 312(6): H1128-H1143.
38
Benedictus MR, Goos JD, Binnewijzend MA, et al. Specific risk factors for microbleeds and white matter hyperintensities in Alzheimer's disease [J]. Neurobiol Aging, 2013, 34(11): 2488-2494.
39
Gao Z, Wang W, Wang Z, et al. Cerebral microbleeds are associated with deep white matter hyperintensities, but only in hypertensive patients [J]. PLoS One, 2014, 9(3): e91637.
40
Hommet C, Mondon K, Constans T, et al. Review of cerebral microangiopathy and Alzheimer's disease: relation between white matter hyperintensities and microbleeds [J]. Dement Geriatr Cogn Disord, 2011, 32(6): 367-378.
41
Valdés Hernández M, Allerhand M, Glatz A, et al. Do white matter hyperintensities mediate the association between brain iron deposition and cognitive abilities in older people? [J]. Eur J Neurol, 2016, 23(7): 1202-1209.
42
de Laat KF, van den Berg HA, van Norden AG, et al. Microbleeds are independently related to gait disturbances in elderly individuals with cerebral small vessel disease [J]. Stroke, 2011, 42(2): 494-497.
43
Choi P, Ren M, Phan TG, et al. Silent infarcts and cerebral microbleeds modify the associations of white matter lesions with gait and postural stability: population-based study [J]. Stroke, 2012, 43(6): 1505-1510.
44
Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders [J]. Nat Rev Neurol, 2018, 14(3): 133-150.
45
Brown R, Benveniste H, Black SE, et al. Understanding the role of the perivascular space in cerebral small vessel disease [J]. Cardiovasc Res, 2018, 114(11): 1462-1473.
46
Heiland EG, Welmer AK, Kalpouzos G, et al. Cerebral small vessel disease, cardiovascular risk factors, and future walking speed in old age: a population-based cohort study [J]. BMC Neurol, 2021, 21(1): 496.
47
Yang S, Li X, Hu W, et al. Enlarged perivascular spaces in the basal ganglia independently related to gait disturbances in older people with cerebral small vessel diseases [J]. Front Aging Neurosci, 2022, 14: 833702.
48
Appelman AP, Exalto LG, van der Graaf Y, et al. White matter lesions and brain atrophy: more than shared risk factors? A systematic review [J]. Cerebrovasc Dis, 2009, 28(3): 227-242.
49
Kim SH, Park JS, Ahn HJ, et al. Voxel-based analysis of diffusion tensor imaging in patients with subcortical vascular cognitive impairment: correlates with cognitive and motor deficits [J]. J Neuroimaging, 2011, 21(4): 317-324.
50
Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges [J]. Lancet Neurol, 2010, 9(7): 689-701.
51
Marlinski V, Nilaweera WU, Zelenin PV, et al. Signals from the ventrolateral thalamus to the motor cortex during locomotion [J]. J Neurophysiol, 2012, 107(1): 455-472.
52
Goldberg JH, Farries MA, Fee MS. Basal ganglia output to the thalamus: still a paradox [J]. Trends Neurosci, 2013, 36(12): 695-705.
53
Su N, Liang X, Zhai FF, et al. The consequence of cerebral small vessel disease: Linking brain atrophy to motor impairment in the elderly [J]. Hum Brain Mapp, 2018, 39(11): 4452-4461.
54
Wang Y, Jiang Y, Lu H, et al. Cross-sectional associations between cortical thickness and independent gait domains in older adults [J]. J Am Geriatr Soc, 2022, 70(9): 2610-2620.
55
Camarda C, Torelli P, Pipia C, et al. Association between atrophy of the caudate nuclei, global brain atrophy, cerebral small vessel disease and mild parkinsonian signs in neurologically and cognitively healthy subjects aged 45-84 years: a crosssectional study [J]. Curr Alzheimer Res, 2018, 15(11): 1013-1026.
56
Klarenbeek P, van Oostenbrugge RJ, Rouhl RP, et al. Ambulatory blood pressure in patients with lacunar stroke: association with total MRI burden of cerebral small vessel disease [J]. Stroke, 2013, 44(11): 2995-2999.
57
Staals J, Makin SD, Doubal FN, et al. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden [J]. Neurology, 2014, 83(14): 1228-1234.
58
Goldstein ED, Badi MK, Hasan TF, et al. Cerebral small vessel disease burden and all-cause mortality: Mayo Clinic Florida familial cerebrovascular diseases registry [J]. J Stroke Cerebrovasc Dis, 2019, 28(12): 104285.
59
Loos CM, McHutchison C, Cvoro V, et al. The relation between total cerebral small vessel disease burden and gait impairment in patients with minor stroke [J]. Int J Stroke, 2018, 13(5): 518-524.
60
唐若楠, 邢晓娜, 陈晓虹. 脑小血管病影像学标志物总负荷评估及其应用 [J]. 中华神经科杂志, 2019, 52(2): 136-142.
[1] 侯牧韶, 刘子渤, 李红玲. 局部振动疗法治疗脑卒中后运动障碍的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 246-250.
[2] 何伟斌, 李宸辉, 王高华, 易伟. 脑深部电刺激治疗强迫症的手术靶点研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(01): 49-53.
[3] 常文轩, 王婷, 刘伟, 蓝天琦, 彭静, 汪诗瑶, 张晓鹏, 冯晨, 宫雪梅, 朱敏. 脑小血管病所致执行障碍的研究进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 179-182.
[4] 郑超, 刘俊朋, 杜俊杰, 马炜, 陈渲宇, 伍骥. Keegan型颈椎病的临床诊断学特征[J]. 中华诊断学电子杂志, 2022, 10(02): 132-136.
[5] 刘澳, 周菁, 孙永兵, 和俊雅, 林新贝, 乔琦, 李中林, 张建成, 武肖玲, 邹智, 胡扬喜, 肖新广, 吕雪, 李昊, 李永丽. 减重代谢手术后神经影像改变与认知功能评估的研究进展[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 203-208.
[6] 白明悦, 杨淑娜, 胡红梅, 胡文立. 透析患者脑小血管病患病情况的研究现状及其机制探讨[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 505-509.
[7] 晏美娟, 邵礼晖. 高水平脂蛋白(a)与无“三高”老年人群小动脉硬化型脑小血管病的相关性研究[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 458-463.
[8] 刘琳, 张奇山, 廖蔓倩, 陈余榕, 李倍, 何玉成, 唐圣桃. HTRA1相关常染色体显性脑小血管病家系报告并文献复习[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 379-385.
[9] 王道合, 施媛媛. 8-iso-PGF2α及P选择素在评估脑小血管病患者认知功能中的价值[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 364-368.
[10] 韩佳熙, 范向民, 苏宁. 数字技术评估方法在神经系统运动障碍诊疗中应用的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 275-279.
[11] 胡红梅, 胡文立. 脑小血管病总负担评估量表的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 145-149.
[12] 李卓然, 胡文立. 内皮功能、炎症、神经系统退行性疾病的生物标志物与小动脉硬化型CSVD的关联[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 57-60.
[13] 张兴文, 侯磊, 冉晔, 田成林. 急性多发性缺血性脑小血管病10例临床分析[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 22-25.
[14] 刘欣, 王丽娟, 刘荧, 王爽, 徐绍红, 李小刚. 缺血性脑卒中后不同程度认知障碍危险因素及认知训练效果分析[J]. 中华脑血管病杂志(电子版), 2022, 16(05): 314-319.
[15] 祁林瑞, 曾嵘, 胡风云. 炎性及代谢指标与脑小血管病认知障碍的相关性[J]. 中华脑血管病杂志(电子版), 2022, 16(01): 32-37.
阅读次数
全文


摘要