切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 60 -63. doi: 10.11817/j.issn.1673-9248.2024.01.010

综述

线粒体功能障碍与心血管疾病、缺血性脑卒中及慢性肾脏病关系的研究进展
罗婷1, 邱令智2, 易东2, 鄢华2,()   
  1. 1. 430022 武汉科技大学附属武汉亚洲心脏病医院心内科;430081 武汉科技大学医学部医学院
    2. 430022 武汉科技大学附属武汉亚洲心脏病医院心内科
  • 收稿日期:2023-09-08 出版日期:2024-02-01
  • 通信作者: 鄢华
  • 基金资助:
    湖北省卫生厅青年科技人才项目(QJX2012-35); 武汉市科技局知识创新项目(2022020801010576)

Research progress on the relationship between mitochondrial dysfunction and cardiovascular disease, ischemic stroke and chronic kidney disease

Ting Luo1, Lingzhi Qiu2, Dong Yi2, Hua Yan2,()   

  1. 1. Department of Cardiology, Wuhan Asia Heart Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430022, China;Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
    2. Department of Cardiology, Wuhan Asia Heart Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430022, China
  • Received:2023-09-08 Published:2024-02-01
  • Corresponding author: Hua Yan
引用本文:

罗婷, 邱令智, 易东, 鄢华. 线粒体功能障碍与心血管疾病、缺血性脑卒中及慢性肾脏病关系的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 60-63.

Ting Luo, Lingzhi Qiu, Dong Yi, Hua Yan. Research progress on the relationship between mitochondrial dysfunction and cardiovascular disease, ischemic stroke and chronic kidney disease[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2024, 18(01): 60-63.

心血管疾病(CVD)、缺血性脑卒中(IS)及慢性肾脏病(CKD)是临床常见病,具有全因死亡率高、预后差的特点。线粒体作为细胞动力工厂,是保证细胞完整性和活力的关键。已有研究显示线粒体功能障碍与心、脑血管疾病和肾脏疾病密切相关,维持线粒体稳态是一种治疗CVD、IS和CKD有前景的策略。本综述总结了线粒体功能(线粒体生物发生、动力学、氧化应激和线粒体自噬)障碍及其与CVD、IS和CKD的关系,以期探索CVD、IS和CKD新的治疗方法。

Cardiovascular disease (CVD), ischemic stroke (IS), and chronic kidney disease (CKD) are common clinical diseases with high all-cause mortality and poor prognosis. Mitochondria, as the power plant of cells, is the key to ensuring the integrity and vitality of cells. Previous studies have shown that mitochondrial dysfunction is closely related to cardiovascular diseases, cerebrovascular diseases, and kidney diseases. Therefore maintaining mitochondrial homeostasis is a promising strategy for treating CVD, IS, and CKD. This review summarized the malfunction of mitochondrial homeostasis (mitochondrial biogenesis, dynamics, oxidative stress, and mitophagy) and its relationship with CVD, IS, and CKD, in order to explore novel therapeutic strategies for CVD, IS, and CKD.

1
卫生部十年百项项目专家组. 急性期脑卒中的规范化治疗技术方案应用与推广(节选): 急性期的特殊治疗 [J/CD]. 中华脑血管病杂志(电子版), 2010, 4(2): 130-142.
2
Jager KJ, Kovesdy C, Langham R, et al. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases [J]. Kidney Int, 2019, 96(5): 1048-1050.
3
Harrington JS, Ryter SW, Plataki M, et al. Mitochondria in health, disease, and aging [J]. Physiol Rev, 2023, 103(4): 2349-2422.
4
Liu Y, Huang Y, Xu C, et al. Mitochondrial dysfunction and therapeutic perspectives in cardiovascular diseases [J]. Int J Mol Sci, 2022, 23(24): 16053.
5
Ho HJ, Shirakawa H. Oxidative stress and mitochondrial dysfunction in chronic kidney disease [J]. Cells, 2022, 12(1): 88.
6
Shademan B, Avci CB, Karamad V, et al. The role of mitochondrial biogenesis in ischemic stroke [J]. J Integr Neurosci, 2023, 22(4): 88.
7
Huang H, Oo TT, Apaijai N, et al. An updated review of mitochondrial transplantation as a potential therapeutic strategy against cerebral ischemia and cerebral ischemia/reperfusion injury [J]. Mol Neurobiol, 2023, 60(4): 1865-1883.
8
Fontecha-barriuso M, Martin-sanchez D, Martinez-moreno JM, et al. The role of PGC-1α and mitochondrial biogenesis in kidney diseases [J]. Biomolecules, 2020, 10(2): 347.
9
Fontecha-Barriuso M, Lopez-Diaz AM, Guerrero-Mauvecin J, et al. Tubular mitochondrial dysfunction, oxidative stress, and progression of chronic kidney disease [J]. Antioxidants, 2022, 11(7): 1356.
10
Wei Z, Chong H, Jiang Q, et al. Smooth muscle overexpression of PGC1α attenuates atherosclerosis in rabbits [J]. Circ Res, 2021, 129(4): e72-e86.
11
Stein S, Lohmann C, Handschin C, et al. ApoE−/− PGC-1α −/− mice display reduced IL-18 levels and do not develop enhanced atherosclerosis [J]. PLoS One, 2010, 5(10): e13539.
12
Oller J, Gabandé-Rodríguez E, Ruiz-Rodrígue MJ, et al. Extracellular tuning of mitochondrial respiration leads to aortic aneurysm [J]. Circulation, 2021, 143(21): 2091-2109.
13
Forte M, Schirone L, Ameri P, et al. The role of mitochondrial dynamics in cardiovascular diseases [J]. Br J Pharmacol, 2021, 178(10): 2060-2076.
14
Song M, Mihara K, Chen Y, et al. Mitochondrial fifission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fifibroblasts [J]. Cell Metab, 2015, 21(2): 273-286.
15
Marin W, Marin D, Ao X, et al. Mitochondria as a therapeutic target for cardiac ischemia-reperfusion injury [J]. Mol Med, 2021, 47(2): 485-499.
16
Quan Y, Xin Y, Tian G, et al. Mitochondrial ROS-modulated mtDNA: a potential target for cardiac aging [J]. Oxid Med Cell Longev, 2020, 2020: 9423593.
17
Karnewar S, Pulipaka S, Katta S, et al. Mitochondria-targeted esculetin mitigates atherosclerosis in the setting of aging via the modulation of SIRT1-mediated vascular cell senescence and mitochondrial function in Apoe−/− mice [J]. Atherosclerosis, 2022, 356: 28-40.
18
Kubli DA, Zhang X, Lee Y, et al. Parkin protein defificiency exacerbates cardiac injury and reduces survival following myocardial infarction [J]. J Biol Chem, 2013, 288(2): 915-926.
19
Lu W, Sun J, Yoon JS, et al. Mitochondrial protein PGAM5 regulates mitophagic protection against cell necroptosis [J]. PLoS One, 2016, 11(1): e147792.
20
Tyrrell DJ, Blin MG, Song J, et al. Age-associated mitochondrial dysfunction accelerates atherogenesis [J]. Circ Res, 2020, 126(3): 298-314.
21
Li P, Bai Y, Zhao X, et al. NR4A1 contributes to high-fat associated endothelial dysfunction by promoting CaMKII-Parkin-mitophagy pathways [J]. Cell Stress Chaperones, 2018, 23(4): 749-761.
22
Lai Y, Lin P, Chen M, et al. Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function [J]. Redox Biol, 2020, 34: 101503.
23
张业昊, 丛伟红, 刘建勋. 西红花苷对缺氧复氧损伤的SHSY5Y细胞线粒体动力学的影响 [J]. 中国药理学通报, 2016, 32(7): 986-990.
24
Huang J, Chen L, Yao ZM, et al. The role of mitochondrial dynamics in cerebral ischemia-reperfusion injury [J]. Biomed Pharmacother, 2023, 162: 114671.
25
Li J, Wu J, Zhou X, et al. Targeting neuronal mitophagy in ischemic stroke: an update [J]. Burns Trauma, 2023, 11: tkad018.
26
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications [J]. Med Res Rev, 2022, 42(1): 259-305.
27
关瑞桥, 邹伟, 孙晓伟, 等. 线粒体自噬在缺血性卒中的机制研究与展望 [J]. 中国卒中杂志, 2017, 12(8): 748-752.
28
Koh E, Kim YK, Shin D, et al. MPC1 is essential for PGC-1α-induced mitochondrial respiration and biogenesis [J]. Biochem J, 2018, 475(10): 1687-1699.
29
Fontecha-Barriuso M, Martín-Sánchez D, Martinez-Moreno JM, et al. PGC-1α defificiency causes spontaneous kidney inflflammation and increases the severity of nephrotoxic AKI [J]. Pathol, 2019, 249(1): 65-78.
30
Wang Y, Liu Q, Cai J, et al. Emodin prevents renal ischemiareperfusion injury via suppression of CAMKII/DRP1-mediated mitochondrial fifission [J]. Eur J Pharmacol, 2022, 916: 174603.
31
Wang Y, Lu M, Xiong L, et al. Drp1-mediated mitochondrial fifission promotes renal fifibroblast activation and fifibrogenesis [J]. Cell Death Dis, 2020, 11(1): 29.
32
Li S, Lin Q, Shao X, et al. Drp1-regulated PARK2-dependent mitophagy protects against renal fifibrosis in unilateral ureteral obstruction [J]. Free Radic Biol Med, 2020, 152: 632-649.
33
Tagaya M, Kume S, Yasuda-Yamahara M, et al. Inhibition of mitochondrial fifission protects podocytes from albumin-induced cell damage in diabetic kidney disease [J]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(5): 166368.
34
Qin X, Zhao Y, Gong J, et al. Berberine protects glomerular podocytes via inhibiting drp1-mediated mitochondrial fission and dysfunction [J]. Theranostics, 2019, 9(6): 1698-1713.
35
Aparicio-Trejo OE, Avila-Rojas SH, Tapia E, et al. Chronic impairment of mitochondrial bioenergetics and β-oxidation promotes experimental AKI-to-CKD transition induced by folic acid [J]. Free Radic Biol Med, 2020, 154: 18-32.
36
Gong X, Duan Y, Zheng J, et al. Tetramethylpyrazine prevents contrast-induced nephropathy via modulating tubular cell mitophagy and suppressing mitochondrial fragmentation, CCL2/CCR2-mediated inflflammation, and intestinal injury [J]. Oxid Med Cell Longev, 2019, 2019: 7096912.
37
Yao M, Liu Y, Sun M, et al. The molecular mechanisms and intervention strategies of mitophagy in cardiorenal syndrome [J]. Front Physiol, 2022, 13: 1008517.
38
Bhatia D, Chung KP, Nakahira K, et al. Mitophagy-dependent macrophage reprogramming protects against kidney fifibrosis [J]. JCI Insight, 2019, 4(23): e132826.
39
Wang Y, Tang C, Cai J, et al. PINK1/Parkin-mediated mitophagy is activated in cisplatin nephrotoxicity to protect against kidney injury [J]. Cell Death Dis, 2018, 9(11): 1113.
40
Kawakami T, Gomez IG, Ren S, et al. Defificient autophagy results in mitochondrial dysfunction and FSGS [J]. Am Soc Nephrol, 2015, 26(5): 1040-1052.
41
Cui J, Shi S, Sun X, et al. Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys [J]. PLoS One, 2013, 8(7): e69720.
42
Han P, Yuan C, Wang Y, et al. Niclosamide ethanolamine protects kidney in adriamycin nephropathy by regulating mitochondrial redox balance [J]. Am J Transl Res, 2019, 11(2): 855-864.
[1] 郝玥萦, 毛盈譞, 张羽, 汪佳旭, 韩林霖, 匡雯雯, 孟瑶, 杨秀华. 超声引导衰减参数成像评估肝脂肪变性及其对心血管疾病风险的预测价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 770-777.
[2] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[3] 陈晓玲, 钟永洌, 刘巧梨, 李娜, 张志奇, 廖威明, 黄桂武. 超高龄髋膝关节术后谵妄及心血管并发症风险预测[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 575-584.
[4] 宋新雅, 苏小慧, 卞士柱, 丁小涵. 吸入性药物治疗肺动脉高压的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 831-835.
[5] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会. 中国肝移植受者肾损伤管理临床实践指南(2023版)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 276-288.
[6] 程柏凯, 杨光. 高胰岛素-正葡萄糖钳夹技术评估慢性肾脏病患者胰岛素抵抗的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 334-339.
[7] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[8] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[9] 王小龙, 吴杰, 段姝伟, 王超卉, 潘娜, 白圆圆, 李航天, 蔡广研. 不同等级体力活动对慢性肾脏病患者预后的影响[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 121-128.
[10] 杨金朔, 吴桥伟, 王春雷, 史怀璋. 脑血管内支架成形术后再狭窄的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 174-179.
[11] 吉莉, 苏云楠, 王斌, 沈滔, 刘团结, 毛蕾, 徐玉萍, 张婷, 王博. 急性缺血性脑卒中患者脑白质微结构改变对长期认知功能损伤的预测价值研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 193-200.
[12] 奚培培, 周加军. 慢性肾脏病患者肌少症机制和诊治的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 491-495.
[13] 孙秀芹, 高美娟, 张琼阁, 吕凯敏, 王宏宇. 京西地区无心血管病史2型糖尿病中老年人群患心血管疾病的危险因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(03): 245-252.
[14] 尹晓晴, 赵子萱, 杨帆, 敖峰, 林勇. D型人格与前循环急性缺血性脑卒中患者预后的相关性[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 206-211.
[15] 易超, 陈庆伟. 饮食模式与血脂异常的相关性[J/OL]. 中华老年病研究电子杂志, 2024, 11(03): 32-37.
阅读次数
全文


摘要