切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 64 -70. doi: 10.11817/j.issn.1673-9248.2024.01.011

综述

偏头痛前驱症状临床表型及其病理生理机制探讨
张祉昱1, 裴月红1, 于玲1, 王军2,(), 傅瑜1,()   
  1. 1. 100191 北京大学第三医院神经内科
    2. 100007 北京中医药大学东直门中医院针灸科
  • 收稿日期:2023-08-20 出版日期:2024-02-01
  • 通信作者: 王军, 傅瑜
  • 基金资助:
    2023年北京市重大疑难疾病中西医协同攻关项目示范项目(2023BJSZDYNJBXTGG-015); 北京大学第三医院临床队列建设项目(BYSYDL2023014)

Clinical phenotype and potential physiological mechanism of prodromal symptoms of migraine

Zhiyu Zhang1, Yuehong Pei1, Ling Yu1, Jun Wang2,(), Yu Fu1,()   

  1. 1. Department of Neurology, Peking University Third Hospital, Beijing 100191, China
    2. Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, China
  • Received:2023-08-20 Published:2024-02-01
  • Corresponding author: Jun Wang, Yu Fu
引用本文:

张祉昱, 裴月红, 于玲, 王军, 傅瑜. 偏头痛前驱症状临床表型及其病理生理机制探讨[J]. 中华脑血管病杂志(电子版), 2024, 18(01): 64-70.

Zhiyu Zhang, Yuehong Pei, Ling Yu, Jun Wang, Yu Fu. Clinical phenotype and potential physiological mechanism of prodromal symptoms of migraine[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2024, 18(01): 64-70.

偏头痛发作通常分为前驱期、先兆期、头痛期和恢复期,2018年国际头痛疾病分类第3版重新定义了前驱症状。过去30年,许多临床研究关注成人和儿童前驱症状的发生率和常见表型。现有的神经电生理和功能影像学证据提示下丘脑的激活和疼痛调制通路改变与前驱症状的产生密切相关,其中导水管周围灰质-延髓头端腹内侧区-三叉神经脊束核通路发挥了重要作用。迄今未有大型随机对照研究验证在前驱期给药能否有效预防疼痛发作,尽早识别前驱症状并采取措施对减轻头痛负担乃至阻止偏头痛发作有益。本篇综述梳理了偏头痛前驱症状的患病率及临床表型、与诱因及先兆的区别和可能的病理生理机制,提出未来偏头痛前驱期预防和管理方向。

Migraine attacks are usually divided into a prodromal phase, an aura phase, a headache phase, and a postdromal phase. Prodromal symptoms are redefined in the International Classification of the Headache Disorders, 3rd edition (ICHD-3) in 2018. Over the past three decades, numerous clinical studies have focused on the incidence and common phenotypes of prodromal symptoms in adults and children. The existing evidence of nerve electrophysiology and functional imaging suggest that the activation of the hypothalamus and the change of pain modulation pathway are closely related to the development of prodromal symptoms, in which periaqueductal gray (PAG)-rostral ventromedial medulla (RVM)-trigeminal spinal nucleus (SpV) pathway plays an important role. So far, there are no large randomized controlled trials to verify whether prodromal administration can effectively prevent pain attacks. It is beneficial to identify prodromal symptoms as early as possible and take measures to reduce the burden of headaches and even prevent migraine attacks. This review focuses on the prevalence, clinical phenotype, differences between a trigger and an aura, and possible pathophysiological mechanisms of prodromal symptoms, hoping to guide the prevention and management of migraine prodromes in the future.

表1 成人前驱症状发生率及常见表型研究总结
表2 儿童前驱症状发生率及常见表型研究总结
表3 偏头痛前驱症状和先兆的区别[3]
表4 前驱期大脑区域参与的功能影像学证据
研究作者 年份 成像方法 偏头痛发作方式 研究人群(例) 主要发现 对照组(例)
Denuelle M等[32] 2007 H215O PET 自发发作 MO(7) 偏头痛发作前4 h内下丘脑和脑干激活,疼痛缓解后持续存在
Stankewitz A等[31] 2011 BOLD fMRI 自发发作

MO(13)

MA(7)

发作间期偏头痛患者SpV激活较健康人群低,发作前增强,发作期显著降低至间期水平 健康受试者(20)
Maniyar FH等[13] 2014 H215O PET GTN诱发 MO(8)

下丘脑仅在前驱期早期激活

前驱期早期背内侧脑桥激活

Maniyar FH等[33] 2014 H215O PET GTN诱发 MO(10) 前驱期恶心患者延髓背侧和PAG激活,无下丘脑激活
Maniyar FH等[34] 2014 H215O PET GTN诱发 MO(10) 前驱期畏光患者纹状体外皮层激活程度更高,无下丘脑激活 无健康受试组
Schulte LH等[35] 2016 BOLD fMRI 自发发作 MO(1) 发作前期下丘脑激活,和SpV功能耦合;头痛期和背侧脑桥耦合
Meylakh N等[36] 2018 BOLD fMRI 自发发作

MO(21)

MA(5)

发作前期脑干、丘脑和下丘脑亚慢振荡活动增加,PAG和下丘脑功能连接增加 健康受试者(78)
Marciszewski KK等[37] 2018 BOLD fMRI 自发发作

MO(24)

MA(7)

发作前期疼痛敏感性降低

SpV激活在相似疼痛强度下增加,伴RVM-SpV功能连接降低

健康受试者(31)
Schulte LH等[38] 2020 BOLD fMRI 自发发作

MO(6)

MA(1)

头痛前48 h内下丘脑激活
Meylakh N等[39] 2020 ASL、BOLD fMRI 自发发作

MO(25)

MA(9)

发作前期右侧后下丘脑静息血流减少

下丘脑外侧与疼痛处理通路区域间静息功能连接强度降低

健康受试者(26)
Karsan N等[40] 2020 BOLD fMRI GTN诱发

MO(10)

MA(15)

前驱期丘脑与楔前叶和楔叶,脑桥与边缘叶、扣带回和额叶皮质的连通性降低;脑桥和边缘叶、额叶皮质、扣带回间存在负耦合

无下丘脑激活

无健康受试组
van Oosterhout WPJ等[49] 2021 BOLD fMRI GTN诱发和自发发作 MO(15) 前驱期下丘脑失调 健康受试者(10)
Stankewitz A等[42] 2022 BOLD fMRI 自发发作 MO(9)MA(3) 视觉、听觉和体感网络、边缘网络和突显网络存在周期性变化:发作间期线性增加,头痛前达峰,头痛期降低至基线
1
Goadsby PJ, Holland PR, Martins-Oliveira M, et al. Pathophysiology of migraine: a disorder of sensory processing [J]. Physiol Rev, 2017, 97(2): 553-622.
2
Pearce JM. Historical aspects of migraine [J]. J Neurol Neurosurg Psychiatry, 1986, 49(10): 1097-1103.
3
Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition [J]. Cephalalgia, 2018, 38(1): 1-211.
4
Blau JN. Migraine prodromes separated from the aura: complete migraine [J]. Br Med J, 1980, 281(6241): 658-660.
5
Drummond PD, Lance JW. Neurovascular disturbances in headache patients [J]. Clin Exp Neurol, 1984, 20: 93-99.
6
Waelkens J. Warning symptoms in migraine: characteristics and therapeutic implications [J]. Cephalalgia, 1985, 5(4): 223-228.
7
Russell MB, Rasmussen BK, Fenger K, et al. Migraine without aura and migraine with aura are distinct clinical entities: a study of four hundred and eighty-four male and female migraineurs from the general population [J]. Cephalalgia, 1996, 16(4): 239-245.
8
Giffin NJ, Ruggiero L, Lipton RB, et al. Premonitory symptoms in migraine: an electronic diary study [J]. Neurology, 2003, 60(6): 935-940.
9
Kelman L. The premonitory symptoms (prodrome): a tertiary care study of 893 migraineurs [J]. Headache, 2004, 44(9): 865-872.
10
Quintela E, Castillo J, Muñoz P, et al. Premonitory and resolution symptoms in migraine: a prospective study in 100 unselected patients [J]. Cephalalgia, 2006, 26(9): 1051-1060.
11
Schulte LH, Jürgens TP, May A. Photo-, osmo- and phonophobia in the premonitory phase of migraine: mistaking symptoms for triggers? [J]. J Headache Pain, 2015, 16: 14.
12
Laurell K, Artto V, Bendtsen L, et al. Premonitory symptoms in migraine: a cross-sectional study in 2714 persons [J]. Cephalalgia, 2016, 36(10): 951-959.
13
Maniyar FH, Sprenger T, Monteith T, et al. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks [J]. Brain, 2014, 137(Pt 1): 232-241.
14
Wang X, Yin Z, Lian Y, et al. Premonitory symptoms in migraine from China: a multi-clinic study of 4821 patients [J]. Cephalalgia, 2021, 41(9): 991-1003.
15
Messina R, Cetta I, Colombo B, et al. Tracking the evolution of non-headache symptoms through the migraine attack [J]. J Headache Pain, 2022, 23(1): 149.
16
Eigenbrodt AK, Christensen RH, Ashina H, et al. Premonitory symptoms in migraine: a systematic review and meta-analysis of observational studies reporting prevalence or relative frequency [J]. J Headache Pain, 2022, 23(1): 140.
17
Ran Y, Yin Z, Lian Y, et al. Gradually shifting clinical phenomics in migraine spectrum: a cross-sectional, multicenter study of 5438 patients [J]. J Headache Pain, 2022, 23(1): 89.
18
Cuvellier JC, Mars A, Vallée L. The prevalence of premonitory symptoms in paediatric migraine: a questionnaire study in 103 children and adolescents [J]. Cephalalgia, 2009, 29(11): 1197-2201.
19
Karsan N, Prabhakar P, Goadsby PJ. Characterising the premonitory stage of migraine in children: a clinic-based study of 100 patients in a specialist headache service [J]. J Headache Pain, 2016, 17(1): 94.
20
Jacobs H, Pakalnis A. Premonitory symptoms in episodic and chronic migraine from a pediatric headache clinic [J]. Pediatr Neurol, 2019, 97: 26-29.
21
Haytoglu Z, Herguner MO. Cranial autonomic symptoms, neck pain: challenges in pediatric migraine [J]. Ann Indian Acad Neurol, 2019, 22(3): 282-285.
22
Ambrosini A, de Noordhout AM, Sándor PS, et al. Electrophysiological studies in migraine: a comprehensive review of their interest and limitations [J]. Cephalalgia, 2003, 23(Suppl) 1: 13-31.
23
Sand T, White LR, Hagen K, et al. Visual evoked potential and spatial frequency in migraine: a longitudinal study [J]. Acta Neurol Scand Suppl, 2009, (189): 33-37.
24
Noseda R, Bernstein CA, Nir RR, et al. Migraine photophobia originating in cone-driven retinal pathways [J]. Brain, 2016, 139(Pt 7): 1971-1986.
25
De Icco R, Greco R, Demartini C, et al. Spinal nociceptive sensitization and plasma palmitoylethanolamide levels during experimentally induced migraine attacks [J]. Pain, 2021, 162(9): 2376-2385.
26
Perrotta A, Anastasio MG, De Icco R, et al. Frequency-dependent habituation deficit of the nociceptive blink reflex in aura with migraine headache. Can migraine aura modulate trigeminal excitability? [J]. Headache, 2017, 57(6): 887-898.
27
Uglem M, Omland PM, Stjern M, et al. Habituation of laser-evoked potentials by migraine phase: a blinded longitudinal study [J]. J Headache Pain, 2017, 18(1): 100.
28
Martins IP, Westerfield M, Lopes M, et al. Brain state monitoring for the future prediction of migraine attacks [J]. Cephalalgia, 2020, 40(3): 255-265.
29
Mykland MS, Bjørk MH, Stjern M, et al. Fluctuations of sensorimotor processing in migraine: a controlled longitudinal study of beta event related desynchronization [J]. J Headache Pain, 2019, 20(1): 77.
30
Porcaro C, Di Lorenzo G, Seri S, et al. Impaired brainstem and thalamic high-frequency oscillatory EEG activity in migraine between attacks [J]. Cephalalgia, 2017, 37(10): 915-926.
31
Stankewitz A, Aderjan D, Eippert F, et al. Trigeminal nociceptive transmission in migraineurs predicts migraine attacks [J]. J Neurosci, 2011, 31(6): 1937-1943.
32
Denuelle M, Fabre N, Payoux P, et al. Hypothalamic activation in spontaneous migraine attacks [J]. Headache, 2007, 47(10): 1418-1426.
33
Maniyar FH, Sprenger T, Schankin C, et al. The origin of nausea in migraine-a PET study [J]. J Headache Pain, 2014, 15(1): 84.
34
Maniyar FH, Sprenger T, Schankin C, et al. Photic hypersensitivity in the premonitory phase of migraine--a positron emission tomography study [J]. Eur J Neurol, 2014, 21(9): 1178-1183.
35
Schulte LH, May A. The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks [J]. Brain, 2016, 139(Pt 7): 1987-1993.
36
Meylakh N, Marciszewski KK, Di Pietro F, et al. Deep in the brain: Changes in subcortical function immediately preceding a migraine attack [J]. Hum Brain Mapp, 2018, 39(6): 2651-2663.
37
Marciszewski KK, Meylakh N, Di Pietro F, et al. Changes in brainstem pain modulation circuitry function over the migraine cycle [J]. J Neurosci, 2018, 38(49): 10479-10488.
38
Schulte LH, Mehnert J, May A. Longitudinal neuroimaging over 30 days: temporal characteristics of migraine [J]. Ann Neurol, 2020, 87(4): 646-651.
39
Meylakh N, Marciszewski KK, Di Pietro F, et al. Altered regional cerebral blood flow and hypothalamic connectivity immediately prior to a migraine headache [J]. Cephalalgia, 2020, 40(5): 448-460.
40
Karsan N, Bose PR, O'Daly O, et al. Alterations in functional connectivity during different phases of the triggered migraine attack [J]. Headache, 2020, 60(7): 1244-1258.
41
van Oosterhout WPJ, van Opstal AM, Schoonman GG, et al. Hypothalamic functional MRI activity in the initiation phase of spontaneous and glyceryl trinitrate-induced migraine attacks [J]. Eur J Neurosci, 2021, 54(3): 5189-5202.
42
Stankewitz A, Schulz E. Intrinsic network connectivity reflects the cyclic trajectory of migraine attacks [J]. Neurobiol Pain, 2022, 11: 100085.
43
Onderwater GLJ, Dool J, Ferrari MD, et al. Premonitory symptoms in glyceryl trinitrate triggered migraine attacks: a case-control study [J]. Pain, 2020, 161(9): 2058-2067.
44
Karsan N, Goadsby PJ. Imaging the premonitory phase of migraine [J]. Front Neurol, 2020, 11: 140.
45
Krestel H, Bassetti CL, Walusinski O. Yawning-Its anatomy, chemistry, role, and pathological considerations [J]. Prog Neurobiol, 2018, 161: 61-78.
46
Schulte LH, May A. Functional neuroimaging in migraine: chances and challenges [J]. Headache, 2016, 56(9): 1474-1481.
47
Pradhan S, Choudhury SS. Clinical characterization of neck pain in migraine [J]. Neurol India, 2018, 66(2): 377-384.
48
Lampl C, Rapoport A, Levin M, et al. Migraine and episodic Vertigo: a cohort survey study of their relationship [J]. J Headache Pain, 2019, 20(1): 33.
49
de Vries Lentsch S, Louter MA, van Oosterhout W, et al. Depressive symptoms during the different phases of a migraine attack: a prospective diary study [J]. J Affect Disord, 2022, 297: 502-507.
50
Gago-Veiga AB, Pagán J, Henares K, et al. To what extent are patients with migraine able to predict attacks? [J]. J Pain Res, 2018, 11: 2083-2094.
51
Hershey AD, Winner P, Kabbouche MA, et al. Use of the ICHD-Ⅱ criteria in the diagnosis of pediatric migraine [J]. Headache, 2005, 45(10): 1288-1297.
52
Lai J, Dilli E. Migraine aura: updates in pathophysiology and management [J]. Curr Neurol Neurosci Rep, 2020, 20(6): 17.
53
Ilik F, Ilik K. Alice in Wonderland syndrome as aura of migraine [J]. Neurocase, 2014, 20(4): 474-475.
54
Martinelli D, Pocora MM, De Icco R, et al. Triggers of migraine: where do we stand? [J]. Curr Opin Neurol, 2022, 35(3): 360-366.
55
Karsan N, Goadsby PJ. Biological insights from the premonitory symptoms of migraine [J]. Nat Rev Neurol, 2018, 14(12): 699-710.
56
Hougaard A, Amin FM, Hauge AW, et al. Provocation of migraine with aura using natural trigger factors [J]. Neurology, 2013, 80(5): 428-431.
57
Nowaczewska M, Wiciński M, Kaźmierczak W, et al. To eat or not to eat: a review of the relationship between chocolate and migraines [J]. Nutrients, 2020, 12(3): 608.
58
Hindiyeh NA, Zhang N, Farrar M, et al. The role of diet and nutrition in migraine triggers and treatment: a systematic literature review [J]. Headache, 2020, 60(7): 1300-1316.
59
Do TP, Hougaard A, Dussor G, et al. Migraine attacks are of peripheral origin: the debate goes on [J]. J Headache Pain, 2023, 24(1): 3.
60
Blau JN. Migraine: theories of pathogenesis [J]. Lancet, 1992, 339(8803): 1202-1207.
61
May A. Understanding migraine as a cycling brain syndrome: reviewing the evidence from functional imaging [J]. Neurol Sci, 2017, 38(Suppl 1): 125-130.
62
Judit A, Sándor PS, Schoenen J. Habituation of visual and intensity dependence of auditory evoked cortical potentials tends to normalize just before and during the migraine attack [J]. Cephalalgia, 2000, 20(8): 714-719.
63
May A, Goadsby PJ. The trigeminovascular system in humans: pathophysiologic implications for primary headache syndromes of the neural influences on the cerebral circulation [J]. J Cereb Blood Flow Metab, 1999, 19(2): 115-127.
64
Robert C, Bourgeais L, Arreto CD, et al. Paraventricular hypothalamic regulation of trigeminovascular mechanisms involved in headaches [J]. J Neurosci, 2013, 33(20): 8827-8840.
65
Ramos JM, Castillo ME, Puerto A. Effects of atropine injection on food-associated drinking in rats with superior salivatory nucleus lesions [J]. Behav Neural Biol, 1989, 52(3): 422-429.
66
Martins-Oliveira M, Akerman S, Holland PR, et al. Pharmacological modulation of ventral tegmental area neurons elicits changes in trigeminovascular sensory processing and is accompanied by glycemic changes: Implications for migraine [J]. Cephalalgia, 2022, 42(13): 1359-1374.
67
Balaban CD, Jacob RG, Furman JM. Neurologic bases for comorbidity of balance disorders, anxiety disorders and migraine: neurotherapeutic implications [J]. Expert Rev Neurother, 2011, 11(3): 379-394.
68
Vila-Pueyo M, Strother LC, Kefel M, et al. Divergent influences of the locus coeruleus on migraine pathophysiology [J]. Pain, 2019, 160(2): 385-394.
69
Uglem M, Omland PM, Nilsen KB, et al. Does pain sensitivity change by migraine phase? A blinded longitudinal study [J]. Cephalalgia, 2017, 37(14): 1337-1349.
70
Ashina M, Hansen JM, Bo ÁD, et al. Human models of migraine - short-term pain for long-term gain [J]. Nat Rev Neurol, 2017, 13(12): 713-724.
71
Peris F, Donoghue S, Torres F, et al. Towards improved migraine management: Determining potential trigger factors in individual patients [J]. Cephalalgia, 2017, 37(5): 452-463.
72
Li W, Liu R, Liu W, et al. The effect of topiramate versus flunarizine on the non-headache symptoms of migraine [J]. Int J Neurosci, 2023, 133(1): 19-25.
73
Chabi A, Zhang Y, Jackson S, et al. Randomized controlled trial of the orexin receptor antagonist filorexant for migraine prophylaxis [J]. Cephalalgia, 2015, 35(5): 379-388.
74
Iannone LF, De Cesaris F, Ferrari A, et al. Effectiveness of anti-CGRP monoclonal antibodies on central symptoms of migraine [J]. Cephalalgia, 2022, 42(13): 1323-1330.
75
Waelkens J. Dopamine blockade with domperidone: bridge between prophylactic and abortive treatment of migraine? A dose-finding study [J]. Cephalalgia, 1984, 4(2): 85-90.
76
Luciani R, Carter D, Mannix L, et al. Prevention of migraine during prodrome with naratriptan [J]. Cephalalgia, 2000, 20(2): 122-126.
77
Mykland MS, Uglem M, Neverdahl JP, et al. Sleep restriction alters cortical inhibition in migraine: A transcranial magnetic stimulation study [J]. Clin Neurophysiol, 2022, 139: 28-42.
78
Martins-Oliveira M, Akerman S, Holland PR, et al. Neuroendocrine signaling modulates specific neural networks relevant to migraine [J]. Neurobiol Dis, 2017, 101: 16-26.
79
Oliveira MM, Akerman S, Tavares I, et al. Neuropeptide Y inhibits the trigeminovascular pathway through NPY Y1 receptor: implications for migraine [J]. Pain, 2016, 157(8): 1666-1673.
80
Holland PR, Akerman S, Goadsby PJ. Modulation of nociceptive dural input to the trigeminal nucleus caudalis via activation of the orexin 1 receptor in the rat [J]. Eur J Neurosci, 2006, 24(10): 2825-2833.
81
Kopruszinski CM, Vizin R, Watanabe M, et al. Exploring the neurobiology of the premonitory phase of migraine preclinically - a role for hypothalamic kappa opioid receptors? [J]. J Headache Pain, 2022, 23(1): 126.
[1] 杨少玲, 韩瑞, 胡丽叶. 糖尿病足坏死性筋膜炎病理生理机制及诊治[J]. 中华损伤与修复杂志(电子版), 2020, 15(05): 392-396.
[2] 汤天津, 于炎冰, 张黎. 周围神经电刺激的临床应用与研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(01): 51-55.
[3] 冯添顺, 朱先理, 王守森. 影响下丘脑激素分泌肿瘤的相关特征及研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(03): 183-186.
[4] 冯兆海, 裴祎楠, 哈里木热提·帕尔哈提, 郝玉军, 姜磊. 术中神经电生理监测相关危险因素分析及预防策略[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 232-236.
[5] 王思达, 周松, 谢春成. 慢性偏头痛的外科治疗体会[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(01): 38-40.
[6] 任骥, 王嗣嵩, 熊建平, 郑宏伟, 潘海鹏. 偏头痛非药物治疗研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(01): 31-34.
[7] 王嗣嵩, 任骥, 熊建平, 郑宏伟, 陈昌平, 孙华东, 陈永军, 张桓, 冯文, 潘海鹏. 肉毒杆菌毒素A型治疗慢性偏头痛的疗效分析(附47例报道)[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(01): 9-13.
[8] 孟艳林, 宋创业, 王洪生, 殷尚炯, 郭英俊, 杜秀玉, 韩一仙, 朱红玉. 神经电生理监测下行微创手术的脑干出血一例报道[J]. 中华脑科疾病与康复杂志(电子版), 2019, 09(05): 315-316.
[9] 朱滢, 孙超, 陈洁, 林琳. 功能性消化不良发病机制及治疗的研究进展[J]. 中华消化病与影像杂志(电子版), 2020, 10(06): 272-278.
[10] 冯韬, 卢超, 孟飞, 王逸鹤, 张华强, 魏鹏虎, 单永治, 赵国光. 立体定向脑电图在儿童致痫性下丘脑错构瘤中的应用[J]. 中华临床医师杂志(电子版), 2021, 15(08): 584-590.
[11] 解淑钰, 李旗, 司彩云, 陶月红. 促黄体生成素基础值<0.1 IU/L的外周性与中枢性性早熟女童的临床特点比较[J]. 中华临床医师杂志(电子版), 2019, 13(02): 111-115.
[12] 陈政宇, 陈国芳, 陈彤. 偏头痛的发病机制及治疗进展[J]. 中华针灸电子杂志, 2020, 09(03): 96-98.
[13] 侯悦, 刘福朋, 张艳红, 张梅, 班博, 赵倩倩, 张红丽, 李艳英. 基础黄体生成素水平对女童中枢性性腺启动状态的预测能力分析[J]. 中华诊断学电子杂志, 2023, 11(02): 109-114.
[14] 于玲, 张祉昱, 张喆, 傅瑜. 偏头痛常见诱因及其在疾病管理中的应用研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 400-403.
[15] 夏禹. 轻型缺血性卒中的研究进展[J]. 中华脑血管病杂志(电子版), 2020, 14(03): 175-179.
阅读次数
全文


摘要