切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (02) : 181 -184. doi: 10.11817/j.issn.1673-9248.2024.02.015

综述

脑小血管病与认知衰弱的研究现状
沈洁1, 谢鸿阳1, 夏翠俏1, 黄勇华1,()   
  1. 1. 100700 北京,解放军总医院第七医学中心神经内科
  • 收稿日期:2024-01-22 出版日期:2024-04-01
  • 通信作者: 黄勇华
  • 基金资助:
    吴阶平医学基金会临床科研专项资助基金(320.6750.18456)

Progress in the research of cognitive frailty in cerebral small vessel disease

Jie Shen1, Hongyang Xie1, Cuiqiao Xia1, Yonghua Huang1,()   

  1. 1. Department of Neurology, the Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
  • Received:2024-01-22 Published:2024-04-01
  • Corresponding author: Yonghua Huang
引用本文:

沈洁, 谢鸿阳, 夏翠俏, 黄勇华. 脑小血管病与认知衰弱的研究现状[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(02): 181-184.

Jie Shen, Hongyang Xie, Cuiqiao Xia, Yonghua Huang. Progress in the research of cognitive frailty in cerebral small vessel disease[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2024, 18(02): 181-184.

认知衰弱是以身体衰弱以及认知功能损害为主要特征的一种严重危害身心健康的疾病。近年来研究发现,脑小血管病患者中认知衰弱的发生比例很高,严重影响患者的日常工作及生活。因脑小血管病患者中认知衰弱的发病过程和机制尚不明确,缺乏有效的治疗方式,近年来已成为研究的热点。现就认知衰弱的定义及机制、脑小血管病患者认知衰弱的国内外研究现状及治疗进行综述,以期更好地理解并干预脑小血管病患者的认知衰弱,避免致死及致残事件发生。

Cognitive frailty, characterized by both physical frailty and impaired cognitive function, poses a significant threat to overall health. Recent research has revealed a high prevalence of cognitive frailty among individuals with cerebral small vessel disease (CSVD), significantly impacting their daily functioning and quality of life. As the underlying processes and mechanisms of cognitive frailty in CSVD remain unclear, and effective treatment methods are lacking, it has become a prominent area of investigation in recent years. This review aims to provide an overview of the definition and mechanisms of cognitive frailty, the current state of domestic and international research on cognitive frailty in patients with CSVD, and the available treatments. By enhancing our understanding and building intervention strategies for cognitive frailty in patients with CSVD, we can prevent fatal and disabling outcomes.

1
Campbell AJ, Buchner DM. For debate: unstable disability and the fluctuations of frailty[J]. Age Ageing, 1997, 26(4): 315-318.
2
Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype[J]. J Gerontol A Biol Sci Med Sci, 2001, 56(3): M146-M156.
3
Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy measure of aging[J]. ScientificWorldJournal, 2001, 1: 323-336.
4
Dent E, Kowal P, Hoogendijk EO. Frailty measurement in research and clinical practice: a review[J]. Eur J Intern Med, 2016, 31: 3-10.
5
Clegg A, Young J, Iliffe S, et al. Frailty in elderly people[J]. Lancet, 2013, 381(9868): 752-762.
6
Xia CQ, Xie HY, Huang YH, et al. Spatiotemporal gait characteristics during single- and dual-task walking are associated with the burden of cerebral small vessel disease[J]. Front Neurol, 2023, 14: 1285947.
7
Duering M, Biessels GJ, Wardlaw JM. Neuroimaging standards for research into small vessel disease-advances since 2013[J]. Lancet Neurol, 2023, 22(7): 602-618.
8
Kant IMJ, Mutsaerts HJMM, van Montfort SJT, et al. The association between frailty and MRI features of cerebral small vessel disease[J]. Sci Rep, 2019, 9(1): 11343.
9
Kelaiditi E, Cesari M, Canevelli M, et al. Cognitive frailty: rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group[J]. J Nutr Health Aging, 2013, 17(9): 726-734.
10
Sargent L, Nalls M, Amella EJ, et al. Shared mechanisms for cognitive impairment and physical frailty: a model for complex systems[J]. Alzheimers Dement (N Y), 2020, 6(1): e12027.
11
Ruan Q, Yu Z, Chen M, et al. Cognitive frailty, a novel target for the prevention of elderly dependency[J]. Ageing Res Rev, 2015, 20: 1-10.
12
Chen LK, Arai H. Physio-cognitive decline as the accelerated aging phenotype[J]. Arch GerontolGeriatr, 2020, 88: 104051.
13
Sugimoto T, Sakurai T, Ono R, et al. Epidemiological and clinical significance of cognitive frailty: a mini review[J]. Ageing Res Rev, 2018, 44: 1-7.
14
Carini G, Musazzi L, Bolzetta F, et al. The potential role of miRNAs in cognitive frailty[J]. Front Aging Neurosci, 2021, 13: 763110.
15
Ipson BR, Fletcher MB, Espinoza SE, et al. Identifying exosome-derived microRNAs as candidate biomarkers of frailty[J]. J Frailty Aging, 2018, 7(2): 100-103.
16
Rusanova I, Diaz-Casado ME, Fernández-Ortiz M, et al. Analysis of plasma microRNAs as predictors and biomarkers of aging and frailty in humans[J]. Oxid Med Cell Longev, 2018, 2018: 7671850.
17
Xia X, Wang Y, Zheng JC. The microRNA-17 ~ 92 family as a key regulator of neurogenesis and potential regenerative therapeutics of neurological disorders[J]. Stem Cell Rev Rep, 2022, 18(2): 401-411.
18
Kim BS, Jung JY, Jeon JY, et al. Circulating hsa-miR-30e-5p, hsa-miR-92a-3p, and hsa-miR-223-3p may be novel biomarkers in systemic lupus erythematosus[J]. HLA, 2016, 88(4): 187-193.
19
Joilin G, Gray E, Thompson AG, et al. Identification of a potential non-coding RNA biomarker signature for amyotrophic lateral sclerosis[J]. Brain Commun, 2020, 2(1): fcaa053.
20
He JR, Zhang Y, Lu WJ, et al. Age-related frontal periventricular white matter hyperintensities and miR-92a-3p are associated with early-onset post-stroke depression[J]. Front Aging Neurosci, 2017, 9: 328.
21
Shi Y, Yi Z, Zhao P, et al. MicroRNA-532-5p protects against cerebral ischemia-reperfusion injury by directly targeting CXCL1[J]. Aging (Albany NY), 2021, 13(8): 11528-11541.
22
Mu J, Cheng X, Zhong S, et al. Neuroprotective effects of miR-532-5p against ischemic stroke[J]. Metab Brain Dis, 2020, 35(5): 753-763.
23
Mu L, Jiang L, Chen J, et al. Serum inflammatory factors and oxidative stress factors are associated with increased risk of frailty and cognitive frailty in patients with cerebral small vessel disease[J]. Front Neurol, 2022, 12: 786277.
24
Siejka TP, Srikanth VK, Hubbard RE, et al. Frailty and cerebral small vessel disease: a cross-sectional analysis of the tasmanian study of cognition and gait (TASCOG)[J]. J Gerontol A Biol Sci Med Sci, 2018, 73(2): 255-260.
25
Siejka TP, Srikanth VK, Hubbard RE, et al. White matter hyperintensities and the progression of frailty-the tasmanian study of cognition and gait[J]. J Gerontol A Biol Sci Med Sci, 2020, 75(8): 1545-1550.
26
Kant IMJ, Mutsaerts HJMM, van Montfort SJT, et al. The association between frailty and MRI features of cerebral small vessel disease[J]. Sci Rep, 2019, 9(1): 11343.
27
Sugimoto T, Ono R, Kimura A, et al. Cross-sectional association between cognitive frailty and white matter hyperintensity among memory clinic patients[J]. J Alzheimers Dis, 2019, 72(2): 605-612.
28
Yoshiura K, Fukuhara R, Ishikawa T, et al. Brain structural alterations and clinical features of cognitive frailty in Japanese community-dwelling older adults: the Arao study (JPSC-AD)[J]. Sci Rep, 2022, 12(1): 8202.
29
Zhào H, Wei W, Huang YH, et al. Cognitive frailty among elderly chinese patients with cerebral small vessel disease: a structural MRI study[J]. Front Med (Lausanne), 2020, 7: 397.
30
Liu Z, Hsu FC, Trombetti A, et al. Effect of 24-month physical activity on cognitive frailty and the role of inflammation: the LIFE randomized clinical trial[J]. BMC Med, 2018, 16(1): 185.
31
Yoon DH, Lee JY, Song W. Effects of resistance exercise training on cognitive function and physical performance in cognitive frailty: a randomized controlled trial[J]. J Nutr Health Aging, 2018, 22(8): 944-951.
32
Lv X, Niu H. Mesenchymal stem cell transplantation for the treatment of cognitive frailty[J]. J Nutr Health Aging, 2021, 25(6): 795-801.
33
Scassellati C, Ciani M, Galoforo AC, et al. Molecular mechanisms in cognitive frailty: potential therapeutic targets for oxygen-ozone treatment[J]. Mech Ageing Dev, 2020, 186: 111210.
34
Ruan Q, Ruan J, Zhang W, et al. Targeting NAD+ degradation: The therapeutic potential of flavonoids for Alzheimer's disease and cognitive frailty[J]. Pharmacol Res, 2018, 128: 345-358.
[1] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[2] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[3] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
[4] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[5] 许月芳, 刘旺, 曾妙甜, 郭宇姝. 多粘菌素B和多粘菌素E治疗外科多重耐药菌感染临床疗效及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 700-703.
[6] 刘柏隆, 周祥福. 压力性尿失禁阶梯治疗的项目介绍[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 125-125.
[7] 刘柏隆. 女性压力性尿失禁阶梯治疗之手术治疗方案选择[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 126-126.
[8] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[9] 陈杰, 武明胜, 李一金, 李虎, 向源楚, 荣新奇, 彭健. 低位直肠癌冷冻治疗临床初步分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 494-498.
[10] 赵泽云, 李建男, 王旻. 中性粒细胞胞外诱捕网在结直肠癌中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 524-528.
[11] 国文凯, 纪鹏程, 毕靖茹, 谢院生. IgA 肾病的十种治疗措施[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 327-333.
[12] 帖璇, 苏晓乐, 王利华. 抗中性粒细胞胞质抗体相关性血管炎治疗研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 345-351.
[13] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[14] 崔军威, 蔡华丽, 胡艺冰, 胡慧. 亚甲蓝联合金属定位夹及定位钩针标记在乳腺癌辅助化疗后评估腋窝转移淋巴结的临床应用价值探究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 625-632.
[15] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
阅读次数
全文


摘要