切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 197 -201. doi: 10.11817/j.issn.1673-9248.2024.03.001

述评

颅内动静脉畸形破裂出血预测中的若干问题
张绍森1, 王基源2, 张东1,()   
  1. 1. 100730 北京医院神经外科,国家老年医学中心,中国医学科学院老年医学研究院
    2. 100070 首都医科大学附属北京天坛医院神经外科
  • 收稿日期:2024-04-08 出版日期:2024-06-01
  • 通信作者: 张东
  • 基金资助:
    国家科技支撑计划(2021YFC2500502)

Several issues in predicting intracranial arteriovenous malformation rupture and hemorrhage

Shaosen Zhang1, Jiyuan Wang2, Dong Zhang1,()   

  1. 1. Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P. R. China, Beijing 100730, China
    2. Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, China
  • Received:2024-04-08 Published:2024-06-01
  • Corresponding author: Dong Zhang
引用本文:

张绍森, 王基源, 张东. 颅内动静脉畸形破裂出血预测中的若干问题[J]. 中华脑血管病杂志(电子版), 2024, 18(03): 197-201.

Shaosen Zhang, Jiyuan Wang, Dong Zhang. Several issues in predicting intracranial arteriovenous malformation rupture and hemorrhage[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2024, 18(03): 197-201.

颅内动静脉畸形(AVM)是一种先天血管畸形,一般认为终身出血风险为50%,因此平衡手术风险和出血风险是AVM诊疗中最重要的问题。如何准确预测破裂出血风险一直是AVM研究中的核心课题。目前,随着影像检查和人工智能技术的进步,许多研究者在预测AVM出血的研究中不断取得进展。本文对目前一些公认的AVM破裂出血相关的危险因素进行了评述,并分析了目前国际上若干较高水平的AVM风险预测模型的优势和不足,为AVM破裂风险预测提供参考。

Intracranial arteriovenous malformation (AVM) is a congenital vascular malformation with an estimated lifetime rupture risk of 50%. Striking the right balance between the risks of surgical intervention and rupture is a critical consideration in the diagnosis and treatment of AVM. The accurate prediction of rupture risk is a major focus of AVM research. Recent advancements in imaging techniques and artificial intelligence have contributed to progress in predicting AVM rupture. This article reviews the recognized risk factors for rupture, and evaluates AVM risk prediction models to assist in predicting AVM rupture risk globally.

1
Lawton MT, Rutledge WC, Kim H, et al. Brain arteriovenous malformations [J]. Nat Rev Dis Primers, 2015, 1: 15008.
2
Osbun JW, Reynolds MR, Barrow DL. Arteriovenous malformations: epidemiology, clinical presentation, and diagnostic evaluation [J]. Handb Clin Neurol, 2017, 143: 25-29.
3
Yang W, Feghali J, Sattari SA, et al. The natural history of hemorrhage in brain arteriovenous malformations-poisson regression analysis of 1066 patients in a single institution [J]. Neurosurgery, 2024, 94(2): 389-398.
4
Mohr JP, Parides MK, Stapf C, et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial [J]. Lancet, 2014, 383(9917): 614-621.
5
Yamada S, Takagi Y, Nozaki K, et al. Risk factors for subsequent hemorrhage in patients with cerebral arteriovenous malformations [J]. J Neurosurg, 2007, 107(5): 965-972.
6
Karlsson B, Lindquist C, Johansson A, et al. Annual risk for the first hemorrhage from untreated cerebral arteriovenous malformations [J]. Minim Invasive Neurosurg, 1997, 40(2): 40-46.
7
Hermanto Y, Takagi Y, Yoshida K, et al. Histopathological features of brain arteriovenous malformations in Japanese patients [J]. Neurol Med Chir (Tokyo), 2016, 56(6): 340-344.
8
Tao W, Li S, Zeng C, et al. Machine learning models for brain arteriovenous malformations presenting with hemorrhage based on clinical and angioarchitectural characteristics [J]. Acad Radiol, 2024, 31(4): 1583-1593.
9
Stapf C, Mast H, Sciacca RR, et al. Predictors of hemorrhage in patients with untreated brain arteriovenous malformation [J]. Neurology, 2006, 66(9): 1350-1355.
10
Qureshi AM, Muthusami P, Krings T, et al. Clinical and angioarchitectural features of hemorrhagic brain arterio-venous malformations in adults and children: contrasts and implications on outcome [J]. Neurosurgery, 2021, 89(4): 645-652.
11
Garzelli L, Shotar E, Blauwblomme T, et al. Risk factors for early brain AVM rupture: cohort study of pediatric and adult patients [J]. AJNR Am J Neuroradiol, 2020, 41(12): 2358-2363.
12
Kim H, Sidney S, Mcculloch CE, et al. Racial/Ethnic differences in longitudinal risk of intracranial hemorrhage in brain arteriovenous malformation patients [J]. Stroke, 2007, 38(9): 2430-2437.
13
Goldberg J, Raabe A, Bervini D. Natural history of brain arteriovenous malformations: systematic review [J]. J Neurosurg Sci, 2018, 62(4): 437-443.
14
Hernesniemi JA, Dashti R, Juvela S, et al. Natural history of brain arteriovenous malformations: a long-term follow-up study of risk of hemorrhage in 238 patients [J]. Neurosurgery, 2008, 63(5): 823-829, discussion 829-831.
15
De Liyis BG, Arini A, Karuniamaya CP, et al. Risk of intracranial hemorrhage in brain arteriovenous malformations: a systematic review and meta-analysis [J]. J Neurol, 2024, 271(5): 2274-2284.
16
Mendoza-Elias N, Shakur SF, Charbel FT, et al. Cerebral arteriovenous malformation draining vein stenosis is associated with atherosclerotic risk factors [J]. J Neurointerv Surg, 2018, 10(8): 788-790.
17
Yu JF, Nicholson AD, Nelson J, et al. Predictors of intracranial hemorrhage volume and distribution in brain arteriovenous malformation [J]. Interv Neuroradiol, 2018, 24(2): 183-188.
18
Sahlein DH, Mora P, Becske T, et al. Features predictive of brain arteriovenous malformation hemorrhage: extrapolation to a physiologic model [J]. Stroke, 2014, 45(7): 1964-1970.
19
Nataf F, Meder JF, Roux FX, et al. Angioarchitecture associated with haemorrhage in cerebral arteriovenous malformations: a prognostic statistical model [J]. Neuroradiology, 1997, 39(1): 52-58.
20
Miyasaka Y, Yada K, Ohwada T, et al. An analysis of the venous drainage system as a factor in hemorrhage from arteriovenous malformations [J]. J Neurosurg, 1992, 76(2): 239-243.
21
Shi X, Wang Z, Yu C. An analysis of the correlation between angiographic and clinical findings in cerebral arteriovenous malformations [J]. Chin Med Sci J, 1993, 8(1): 35-37.
22
Albert P, Salgado H, Polaina M, et al. A study on the venous drainage of 150 cerebral arteriovenous malformations as related to haemorrhagic risks and size of the lesion [J]. Acta Neurochir (Wien), 1990, 103(1-2): 30-34.
23
De Castro-Afonso LH, Vanzim JR, Trivelato FP, et al. Association between draining vein diameters and intracranial arteriovenous malformation hemorrhage: a multicentric retrospective study [J]. Neuroradiology, 2020, 62(11): 1497-1505.
24
Li R, Chen P, Han H, et al. Association of nidus size and rupture in brain arteriovenous malformations: insight from angioarchitecture and hemodynamics [J]. Neurosurg Rev, 2023, 46(1): 216.
25
Mosteiro A, Pedrosa L, Torne R, et al. Venous tortuosity as a novel biomarker of rupture risk in arteriovenous malformations: ARI score [J]. J Neurointerv Surg, 2022, 14(12): 1220-1225.
26
Hung AL, Yang W, Jiang B, et al. The effect of flow-related aneurysms on hemorrhagic risk of intracranial arteriovenous malformations [J]. Neurosurgery, 2019, 85(4): 466-475.
27
Langer DJ, Lasner TM, Hurst RW, et al. Hypertension, small size, and deep venous drainage are associated with risk of hemorrhagic presentation of cerebral arteriovenous malformations [J]. Neurosurgery, 1998, 42(3): 481-486, discussion 487-489.
28
Spetzler RF, Hargraves RW, Mccormick PW, et al. Relationship of perfusion pressure and size to risk of hemorrhage from arteriovenous malformations [J]. J Neurosurg, 1992, 76(6): 918-923.
29
Rustici A, Vari F, Sturiale C, et al. The angio-architectural features of brain arteriovenous malformations: is it possible to predict the probability of rupture? [J]. Neuroradiol J, 2023, 36(4): 427-434.
30
Stefani MA, Porter PJ, Terbrugge KG, et al. Large and deep brain arteriovenous malformations are associated with risk of future hemorrhage [J]. Stroke, 2002, 33(5): 1220-1224.
31
Mine S, Hirai S, Ono J, et al. Risk factors for poor outcome of untreated arteriovenous malformation [J]. J Clin Neurosci, 2000, 7(6): 503-506.
32
Zhang S, Sun S, Zhai Y, et al. Development and validation of a model for predicting the risk of brain arteriovenous malformation rupture based on three-dimensional morphological features [J]. Front Neurol, 2022, 13: 979014.
33
Khaw AV, Mohr JP, Sciacca RR, et al. Association of infratentorial brain arteriovenous malformations with hemorrhage at initial presentation [J]. Stroke, 2004, 35(3): 660-663.
34
Chalil A, Raupp EF, Duckwiler GR, et al. Hemodynamic and anatomical factors in arteriovenous malformation clinical presentation: 45 case studies [J]. Can J Neurol Sci, 2023, 50(1): 37-43.
35
Raoult H, Bannier E, Maurel P, et al. Hemodynamic quantification in brain arteriovenous malformations with time-resolved spin-labeled magnetic resonance angiography [J]. Stroke, 2014, 45(8): 2461-2464.
36
Lin TM, Yang HC, Lee CC, et al. Stasis index from hemodynamic analysis using quantitative DSA correlates with hemorrhage of supratentorial arteriovenous malformation: a cross-sectional study [J]. J Neurosurg, 2019, 132(5): 1574-1582.
37
Zhu H, Liu L, Chang Y, et al. Quantitative evaluation of the subsequent hemorrhage with arteriography-derived hemodynamic features in patients with untreated cerebral arteriovenous malformation [J]. Front Neurol, 2023, 14: 1174245.
38
Chen Y, Chen P, Li R, et al. Rupture-related quantitative hemodynamics of the supratentorial arteriovenous malformation nidus [J]. J Neurosurg, 2023, 138(3): 740-749.
39
Guo Y, Saunders T, Su H, et al. Silent intralesional microhemorrhage as a risk factor for brain arteriovenous malformation rupture [J]. Stroke, 2012, 43(5): 1240-1246.
40
Feghali J, Yang W, Xu R, et al. R(2)eD AVM score [J]. Stroke, 2019, 50(7): 1703-1710.
41
Taweel BA, Gillespie CS, Richardson GE, et al. External validation of brain arteriovenous malformation haemorrhage scores, AVICH, ICH and R2eD [J]. Acta Neurochir (Wien), 2022, 164(6): 1685-1692.
42
Rangwala SD, Albanese JS, Slingerland AL, et al. External validation of the R2eD AVM scoring system to assess rupture risk in pediatric AVM patients [J]. J Neurosurg Pediatr, 2023, 31(5): 469-475.
43
Chen Y, Han H, Meng X, et al. Development and validation of a scoring system for hemorrhage risk in brain arteriovenous malformations [J]. JAMA Netw Open, 2023, 6(3): e231070.
44
Zhang S, Wang J, Sun S, et al. CT angiography radiomics combining traditional risk factors to predict brain arteriovenous malformation rupture: a machine learning, multicenter study [J]. Transl Stroke Res, 2023. Online ahead of print.
[1] 兰华, 高丽莎, 申明, 张铭光. 内镜黏膜下剥离术后溃疡出血的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 467-469.
[2] 丁关棣, 黄云, 曹震, 刘刚. 胃癌根治术后感染性并发症预测:基于真实世界数据的Nomogram模型开发与验证[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 261-266.
[3] 张阳, 纽燕娜, 常丽蓉, 唐国华, 赵萍. ERAS理念下肝棘球蚴病术后并发症风险预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 287-290.
[4] 麦子结, 曾学晴, 张乾升, 刘永达. 输尿管软镜术后严重出血治疗的初步探索[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 366-371.
[5] 王冬澳, 林超, 鄂长勇. 胰腺术后出血原因及诊治策略[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 472-480.
[6] 杨竞, 周光文. 肝硬化门静脉高压症治疗后再出血危险因素分析及预测模型构建[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 296-301.
[7] 王绅, 王如海, 李春, 杨震, 孙菲琳. 中重型颅脑创伤患者住院时间延长的危险因素分析及预测模型构建[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 146-153.
[8] 景方坤, 周建波, 王全才, 黄海韬, 李岩峰, 徐杨熙. 神经导航引导下治疗基底节高血压脑出血的短期疗效预测[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 154-159.
[9] 秦相清, 朱陈, 张海银. 构建诺模图模型预测肝硬化食管胃底静脉曲张出血的风险[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 330-335.
[10] 刘燚隆, 党荣广, 艾蓉, 张凯. 肝硬化合并静脉曲张出血患者内镜治疗后再出血风险的模型建立与验证[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 336-342.
[11] 刘伟, 高续, 谢玉海, 蒋哲, 刘士成. 基于增强CT影像组学模型在预测急性胰腺炎复发中的应用价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 348-354.
[12] 田娜, 韩飞天. 基于CT平扫影像组学模型与系统免疫炎症指数预测急性胰腺炎复发模型的建立[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 355-359.
[13] 杨巨顺, 何伯圣. 急性肠系膜缺血不可逆肠坏死预测因素的研究进展[J]. 中华消化病与影像杂志(电子版), 2024, 14(03): 275-281.
[14] 赵倩, 刘文超, 李玺琳, 章邱东. 老年急性脑梗死诱发胃肠损伤的风险因素分析及模型构建[J]. 中华消化病与影像杂志(电子版), 2024, 14(03): 213-217.
[15] 宫平, 刘倩, 王啸, 袁会敏, 王维展, 王璞. 早期PI联合Pv-aCO2/Ca-vO2预测老年脓毒性休克的死亡风险[J]. 中华临床医师杂志(电子版), 2024, 18(03): 253-258.
阅读次数
全文


摘要