切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 202 -209. doi: 10.11817/j.issn.1673-9248.2024.03.002

论著

基于人工智能分析颈内动脉颅外段迂曲特征及对称性的应用性评价
林一鑫1, 董晶2, 贾建文1, 黄菊梅1, 武军元3, 王双坤4, 柳云鹏1, 汪阳1,()   
  1. 1. 100020 首都医科大学附属北京朝阳医院神经外科
    2. 100049 北京,清华大学玉泉医院(清华大学中西医结合医院)装备办
    3. 100020 首都医科大学附属北京朝阳医院急诊科
    4. 100020 首都医科大学附属北京朝阳医院放射介入影像中心
  • 收稿日期:2024-03-25 出版日期:2024-06-01
  • 通信作者: 汪阳
  • 基金资助:
    首都医科大学附属北京朝阳医院多学科临床研究创新团队项目(CYDXK202204)

The tortuosity and symmetry characteristics of extracranial segment of cervical carotid arteries: evaluation of CT angiography by deep learning-based artificial intelligence

Yixin Lin1, Jing Dong2, Jianwen Jia1, Jumei Huang1, Junyuan Wu3, Shuangkun Wang4, Yunpeng Liu1, Yang Wang1,()   

  1. 1. Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
    2. Department of Medical Engineering, Tsinghua University Yuquan Hospital, Beijing 100049, China
    3. Department of Emergency, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
    4. Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
  • Received:2024-03-25 Published:2024-06-01
  • Corresponding author: Yang Wang
引用本文:

林一鑫, 董晶, 贾建文, 黄菊梅, 武军元, 王双坤, 柳云鹏, 汪阳. 基于人工智能分析颈内动脉颅外段迂曲特征及对称性的应用性评价[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(03): 202-209.

Yixin Lin, Jing Dong, Jianwen Jia, Jumei Huang, Junyuan Wu, Shuangkun Wang, Yunpeng Liu, Yang Wang. The tortuosity and symmetry characteristics of extracranial segment of cervical carotid arteries: evaluation of CT angiography by deep learning-based artificial intelligence[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2024, 18(03): 202-209.

目的

验证人工智能技术提取的血管形态参数在颈内动脉颅外段(C1段)形态评价中的价值。

方法

收集2022年3月至11月于首都医科大学朝阳医院急诊进行头颈联合CT血管造影(CTA)检查的200例患者的全部血管资料。首先,通过人工智能深度学习的CTA影像资料,获取C1段定量解剖参数,包括实际长度、相对长度、距离因子度量、拐点计数指标、扭率、迂曲指数、弯曲度、曲率、角度和角度度量值指标10项血管相关参数;其次,由影像医师对C1段的对称性进行视觉评估并依据视觉评估结果将患者分为C1对称组及C1非对称组。通过配对t检验分析C1对称组和C1非对称组左右侧血管形态参数的差异;随后依据Metz分型将C1段分为直型、C型、S型、卷曲、折曲5种类型,使用ANOVA单因素分析不同迂曲类型血管形态之间存在的差异,验证上述10项血管形态学参数在不同迂曲类型C1段间存在的差异。

结果

200例患者的双侧C1段共400例血管被纳入分析,76例为女性。对C1段的对称性视觉评估结果显示,87例患者为C1对称组,113例患者为C1非对称组。C1对称组中10项血管形态指标左右侧差异均无统计学意义(P均>0.05),C1非对称组中左右侧C1段的相对长度、拐点计数指标和距离因子度量差异具有统计学意义(P<0.05),而其余指标在双侧间差异不存在统计学意义(P>0.05)。对C1段迂曲类型视觉评估结果显示:24例为直型,126例为S型,182例为C型,18例为卷曲,50例为折曲。对400例C1段血管进行迂曲类型分类后,应用人工智能技术提取的相对长度、距离因子度量、拐点计数指标、迂曲指数、弯曲度、曲率、角度和角度度量指标8项血管参数在不同迂曲类型间差异存在统计学意义(P均<0.05),实际长度、扭率在不同迂曲类型间差异无统计学意义(P>0.05)。

结论

血管形态学参数可以作为辅助评估血管形态的重要指标,这些定量指标可以帮助准确识别复杂的颈内动脉CTA三维图像上血管的走行、形态以及双侧血管对称性。

Objective

To explore the value of vascular morphological parameters extracted by artificial intelligence technology in the morphological evaluation of the internal neck arteries (C1) morphological evaluation.

Methods

Vascular data of 200 patients who underwent emergency head-neck CT angiography (CTA) examination at Beijing Chaoyang Hospital, Capital Medical University from March 2022 to November 2022 were collected. artificial intelligence deep learning was utilized to analyze CTA image data. Quantitative anatomical parameters of the C1 segment of the internal carotid artery were extracted, including the actual length, relative length, distance factor metric, sum of angle metrics, tortuosity index, inflection count metrics, bending length, angle, curvature, torsion. Ten vascular-related parameters in total Secon, a radiologist conducted visual assessment of the symmetry of C1 and categorized the vascular morphology into the symmetry and the asymmetric group according to the visual assessment result. There are differences in the form. Subsequently C1 is divided into five types: "straight", "C-type", "S-type", "curling", and "folding" based on the METZ type. The sample non-parameter test analysis was performed to examine the differences in vascular morphology between the various types and to verify the difference in vascular morphology parameters among the different METZ types.

Results

A total of 400 vessels of bilateral C1 segments from 200 patients were included in the analysis, including 76 females. Visual assessment results of C1 symmetry showed that 87 patients had symmetrical segments, while 113 patients had asymmetrical segments. There were no statistically significant differences in the 10 parameters in the symmetrical C1 group, while statistically significant differences were found in relative length, inflection point count index, and distance factor measurement in the asymmetrical C1 group (P<0.05), and no statistically significant differences were found in the remaining parameters between the bilateral sides (P>0.05). Visual assessment results of C1 tortuosity types showed 24 "straight", 126 "S-shaped", 182 "C-shaped", 18 "coiled", and 50 "folded" cases. After classifying the 400 cases of C1 according to tortuosity types, there were statistically significant differences in the 8 vascular parameters[relative length, distance factor metric, sum of angle metrics, tortuosity index, inflection count metrics, bending length, angle, curvature] extracted by artificial intelligence technology among different tortuosity types, with the exception of actual length or torsion.

Conclusion

Vascular morphological parameters are crucial indicators for auxiliary evaluation of vascular morphology. These quantitative measures facilitate the accurate identification of the course, morphology, and bilateral symmetry of vessels on complex three-dimensional CTA images of cervical carotid arteries.

图1 颈内动脉颅外段(C1段)分型示意图。图a:直型,颈总动脉中心线与中心线夹角<15°;图b:S型,颈内动脉颅外段呈现为S形;图c:C型,颈内动脉颅外段呈现为C形;图d:卷曲,颈内动脉呈现为夸张S形曲线或圆形配置;图e:扭结,与狭窄相关的急性成角(<90°)
图2 自动提取头颈联合三维成像DICOM文件经人工智能技术提取血管中心线,标记转折点后计算血管迂曲相关参数(弯曲度),并以不同颜色进行标注,客观呈现血管迂曲程度
图3 血管形态参数指标及说明。图a:实际长度(AL),即提取血管节段中心线的实际长度,白线为血管的中心线。图b:相对长度(RL),是血管中心线曲线起点与曲线终点的直线距离(DL)与曲线起点与曲线终点的AL的比值。越迂曲的血管,RL越低。图c:角度度量指标(SOAM),表示将中心线上所有夹角的补角进行求和之后与AL的比值。即将相关血管节段起点与末端所有夹角(φ)的补角进行求和,并将其与血管的AL进行标准化处理;其中φi表示测量的角度,n是其计数。对于更直的曲线,补角更小,因此整个SOAM更小。图d:迂曲指数(TI),血管中心线AL与血管中心线DL的比值;TI越大,反映血管越迂曲。图e:拐点计数指标(ICM),是曲线上转折点/拐点数与血管中心线AL的乘积与血管中心线DL的比值。拐点/转折点的定义是血管走行弧度发生转变的点(由凹型转为凸性,反之亦然);式中,ni为曲线拐点个数。对于越迂曲的血管,ICM指标越高。图f:弯曲度(BL),即AL和DL之间的最大垂直距离,较大的BL值通常意味着更高的局部弯曲度。图g:角度(Angle),曲线上的2个相邻点之间的夹角,用来估计曲线的弯曲程度,较大的夹角表示血管迂曲程度更小。图h:曲率(K),表示的以血管弧度做切线,与这段血管弧度相切的内切圆半径的倒数;t表示曲线上的点,曲线的切向量为r'(t),法向量为r”(t)。K越大,反应血管越迂曲。图i:扭率(T),表示血管在三维空间上的扭转程度;在三维曲线的基本微分几何中,T代表曲率平面的扭曲程度,是由Frenet-Serret公式给出的Frenet框架的微分方程系统中的系数。曲线的切向量为r'(t),法向量为r”(t),三阶导数为r”(t)。扭率是曲线的切向量对弧长的旋转速度。越迂曲的血管,其T越大。图j:距离因子度量(DFM),表示血管起点至各个转折点位动脉路径长度L之和与起点至各个转折点的欧氏距离D之和的比值,越迂曲的血管,DFM值越大
表1 视觉评估的颈内动脉C1对称与否组间基线情况的比较
表2 C1段对称组人工智能计算左右侧血管参数对比情况(
x¯±s
表3 C1非对称组人工智能计算左右侧血管参数对比情况(
x¯±s
图4 5种迂曲类型10项指标的两两差异比较结果。图a~j分别为实际长度、相对长度、角度度量指标、迂曲指数、拐点计数指标、弯曲度、角度、曲率、扭率和距离因子度量的不同迂曲类型间差异比较结果 注:ns表示差异无统计学意义,*表示差异具有统计学意义(*越多,表示P值越小)
1
万姗, 陈伟志. 颈动脉几何形态与前循环缺血性脑血管病相关性研究 [J]. 中国临床医学影像杂志, 2023, 34(6): 394-398.
2
戴正泽. 颈动脉血管成形和支架置入术后再狭窄危险因素研究 [D]. 南京: 南京医科大学, 2019.
3
Koge J, Tanaka K, Yoshimoto T, et al. Internal carotid artery tortuosity: impact on mechanical thrombectomy [J]. Stroke, 2022, 53(8): 2458-2467.
4
Leker RR, Kasner SE, El Hasan HA, et al. Impact of carotid tortuosity on outcome after endovascular thrombectomy [J]. Neurol Sci, 2021, 42(6): 2347-2351.
5
Sato D, Ogawa S, Torazawa S, et al. Evaluation of middle cerebral artery symmetry: a pilot study for clinical application in mechanical thrombectomy [J]. World Neurosurg, 2022, 166: e980-e985.
6
González RG. Current state of acute stroke imaging [J]. Stroke, 2013, 44(11): 3260-3264.
7
Deipolyi AR, Hamberg LM, Gonzaléz RG, et al. Diagnostic yield of emergency department arch-to-vertex CT angiography in patients with suspected acute stroke [J]. AJNR Am J Neuroradiol, 2015, 36(2): 265-268.
8
秦晓东, 周钏, 杨平生, 等. 多层螺旋CT血管成像诊断冠状动脉迂曲价值研究 [J]. 人民军医, 2021, 64(11): 1104-1106.
9
Kim ST, Brinjikji W, Lehman VT, et al. Association between carotid artery tortuosity and carotid dissection: a case-control study [J]. J Neurosurg Sci, 2018, 62(4): 413-417.
10
Pellegrino L, Prencipe G, Vairo F. [Dolicho-arteriopathies (kinking, coiling, tortuoosity) of the carotid arteries: study by color Doppler ultrasonography] [J]. Minerva Cardioangiol, 1998, 46(3): 69-76.
11
李晓理, 张博, 王康, 等. 人工智能的发展及应用 [J]. 北京工业大学学报, 2020, 46(6): 583-590.
12
Yang Y, Yang J, Feng J, et al. Early diagnosis of acute ischemic stroke by brain computed tomography perfusion imaging combined with head and neck computed tomography angiography on deep learning algorithm [J]. Contrast Media Mol Imaging, 2022, 2022: 5373585.
13
Van Assen M, Martin SS, Varga-Szemes A, et al. Automatic coronary calcium scoring in chest CT using a deep neural network in direct comparison with non-contrast cardiac CT: a validation study [J]. Eur J Radiol, 2021, 134: 109428.
14
Mokin M, Waqas M, Chin F, et al. Semi-automated measurement of vascular tortuosity and its implications for mechanical thrombectomy performance [J]. Neuroradiology, 2021, 63(3): 381-389.
15
Fu F, Wei J, Zhang M, et al. Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network [J]. Nat Commun, 2020, 11(1): 4829.
16
Fu F, Shan Y, Yang G, et al. Deep learning for head and neck CT angiography: stenosis and plaque classification [J]. Radiology, 2023, 307(3): e220996.
17
Weibel J, Fields WS. Tortuosity, coiling, and kinking of the internal carotid artery. I. etiology and radiographic anatomy [J]. Neurology, 1965, 15: 7-18.
18
Metz H, Bannister R, Murray-leslie R, et al. Kinking of the internal carotid artery: in relation to cerebrovascular disease [J]. Lancet, 1961, 277(7174): 424-426.
19
Nagata T, Masumoto K, Hayashi Y, et al. Three-dimensional computed tomographic analysis of variations of the carotid artery [J]. J Craniomaxillofac Surg, 2016, 44(6): 734-742.
20
Kimmel R, Shaked D, Kiryati N, et al. Skeletonization via distance maps and level sets [J]. Comput Vis Image Underst, 1995, 62(3): 382-391.
21
Kliś KM, Krzyżewski RM, Kwinta BM, et al. Increased tortuosity of basilar artery might be associated with higher risk of aneurysm development [J]. Eur Radiol, 2020, 30(10): 5625-5632.
22
Bridio S, Luraghi G, Rodriguez Matas JF, et al. Impact of the internal carotid artery morphology on in silico stent-retriever thrombectomy outcome [J]. Front Med Technol, 2021, 3: 719909.
23
Pressley A. Surfaces in three dimensions [M]//Elementary Differential Geometry. London: Springer, 2010: 67-93.
24
Koge J, Tanaka K, Yoshimoto T, et al. Internal carotid artery tortuosity: impact on mechanical thrombectomy [J]. Stroke, 2022, 53(8): 2458-2467.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[3] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[4] 孔德铭, 刘铮, 李睿, 钱文伟, 王飞, 蔡道章, 柴伟. 人工智能辅助全髋关节置换三维术前规划准确性评价[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 431-438.
[5] 张嘉炜, 王瑞, 张克诚, 易磊, 周增丁. 烧烫伤创面深度智能检测模型P-YOLO的建立及测试效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 379-385.
[6] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[7] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[8] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[9] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[10] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[11] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[12] 赵毅, 李昶田, 唐文博, 白雪婷, 刘荣. 腹腔镜术中超声主胰管自动识别模型的临床应用[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 290-294.
[13] 潘清, 葛慧青. 基于机械通气波形大数据的人机不同步自动监测方法[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 399-403.
[14] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[15] 杨松林, 黄仕豪, 王丽珠, 李禧萌, 邹飞翔, 李坤炜, 梁明柱, 陈炳辉. 良性肺结节生长变化的影像学评价[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 344-350.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?