| 1 |
Lozano AM, Lipsman N, Bergman H, et al. Deep brain stimulation: current challenges and future directions [J]. Nat Rev Neurol, 2019, 15(3): 148-160.
|
| 2 |
Mattioli F, Maglianella V, D'antonio S, et al. Non-invasive brain stimulation for patients and healthy subjects: current challenges and future perspectives [J]. J Neurol Sci, 2024, 456: 122825.
|
| 3 |
Yavari F, Jamil A, Mosayebi Samani M, et al. Basic and functional effects of transcranial Electrical Stimulation (tES)—An introduction [J]. Neurosci Biobehav Rev, 2018, 85: 81-92.
|
| 4 |
Deng ZD, Lisanby SH, Peterchev AV. Electric field depth–focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs [J]. Brain Stimul, 2013, 6(1): 1-13.
|
| 5 |
Grossman N, Bono D, Dedic N, et al. Noninvasive deep brain stimulation via temporally interfering electric fields [J]. Cell, 2017, 169(6): 1029-1041.e16.
|
| 6 |
Yang C, Xu Y, Feng X, et al. Transcranial temporal interference stimulation of the right globus pallidus in Parkinson's disease [J]. Mov Disord, 2025, 40(6): 1061-1069.
|
| 7 |
Guo W, He Y, Song X, et al. 40-Hz temporally interfering electrical stimulation over the temporal lobe induced antidepressant-like effects in chronic unpredictable mild stress rats [J]. IEEE Trans Neural Syst Rehabil Eng, 2025, 33: 1796-1804.
|
| 8 |
Acerbo E, Jegou A, Luff C, et al. Focal non-invasive deep-brain stimulation with temporal interference for the suppression of epileptic biomarkers [J]. Front Neurosci, 2022, 16: 945221.
|
| 9 |
Hutcheon B, Yarom Y. Resonance, oscillation and the intrinsic frequency preferences of neurons [J]. Trends Neurosci, 2000, 23(5): 216-222.
|
| 10 |
Li L, Bai H, Wu L, et al. Non-invasive modulation of deep brain nuclei by temporal interference stimulation [J]. Neurosci Bull, 2025, 41(5): 853-865.
|
| 11 |
Liu R, Zhu G, Wu Z, et al. Temporal interference stimulation targets deep primate brain [J]. Neuroimage, 2024, 291: 120581.
|
| 12 |
Violante IR, Alania K, Cassara AM, et al. Non-invasive temporal interference electrical stimulation of the human hippocampus [J]. Nat Neurosci, 2023, 26(11): 1994-2004.
|
| 13 |
Mirzakhalili E, Barra B, Capogrosso M, et al. Biophysics of temporal interference stimulation [J]. Cell Syst, 2020, 11(6): 557-572, e555.
|
| 14 |
Karimi F, Attarpour A, Amirfattahi R, et al. Computational analysis of non-invasive deep brain stimulation based on interfering electric fields [J]. Phys Med Biol, 2019, 64(23): 235010.
|
| 15 |
Plovie T, Schoeters R, Tarnaud T, et al. Nonlinearities and timescales in neural models of temporal interference stimulation [J]. Bioelectromagnetics, 2025, 46(1): e22522.
|
| 16 |
Howell B, Mcintyre CC. Feasibility of interferential and pulsed transcranial electrical stimulation for neuromodulation at the human scale [J]. Neuromodulation, 2021, 24(5): 843-853.
|
| 17 |
Tavakoli AV, Yun K. Transcranial alternating current stimulation (tACS) mechanisms and protocols [J]. Front Cell Neurosci, 2017, 11: 214.
|
| 18 |
Lee S, Lee C, Park J, et al. Individually customized transcranial temporal interference stimulation for focused modulation of deep brain structures: a simulation study with different head models [J]. Sci Rep, 2020, 10(1): 11730.
|
| 19 |
Radman T, Ramos RL, Brumberg JC, et al. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro [J]. Brain Stimul, 2009, 2(4): 215-228, e213.
|
| 20 |
Rampersad S, Roig-Solvas B, Yarossi M, et al. Prospects for transcranial temporal interference stimulation in humans: a computational study [J]. Neuroimage, 2019, 202: 116124.
|
| 21 |
Vieira PG, Krause MR, Pack CC. Temporal interference stimulation disrupts spike timing in the primate brain [J]. Nat Commun, 2024, 15(1): 4558.
|
| 22 |
Krause MR, Vieira PG, Csorba BA, et al. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain [J]. Proc Natl Acad Sci U S A, 2019, 116(12): 5747-5755.
|
| 23 |
Ahtiainen A, Leydolph L, Tanskanen JMA, et al. Electric field temporal interference stimulation of neurons in vitro [J]. Lab Chip, 2024, 24(16): 3945-3957.
|
| 24 |
Yu H, Wang C, Li K, et al. Resonance dynamics and latent manifolds in cortical neural networks with temporal interference stimulation [C]. Proceedings of the 2022 41st Chinese Control Conference (CCC), 2022.
|
| 25 |
Deans JK, Powell AD, Jefferys JGR. Sensitivity of coherent oscillations in rat hippocampus to AC electric fields [J]. J Physiol, 2007, 583(2): 555-565.
|
| 26 |
Bernardi D, Lindner B. Detecting single-cell stimulation in a large network of integrate-and-fire neurons [J]. Phys Rev E, 2019, 99(3): 032304.
|
| 27 |
Caldas-Martinez S, Goswami C, Forssell M, et al. Cell-specific effects of temporal interference stimulation on cortical function [J]. Commun Biol, 2024, 7(1): 1076.
|
| 28 |
Kwak Y, Lim S, Cho HU, et al. Effect of temporal interference electrical stimulation on phasic dopamine release in the striatum [J]. Brain Stimul, 2023, 16(5): 1377-1383.
|
| 29 |
Qi S, Liu X, Yu J, et al. Temporally interfering electric fields brain stimulation in primary motor cortex of mice promotes motor skill through enhancing neuroplasticity [J]. Brain Stimul, 2024, 17(2): 245-257.
|
| 30 |
Liu X, Qi S, Hou L, et al. Noninvasive deep brain stimulation via temporal interference electric fields enhanced motor performance of mice and its neuroplasticity mechanisms [J]. Mol Neurobiol, 2024, 61(6): 3314-3329.
|
| 31 |
Huang Y, Datta A, Parra LC. Optimization of interferential stimulation of the human brain with electrode arrays [J]. J Neural Eng, 2020, 17(3): 036023.
|
| 32 |
Honarbakhsh B, Mohammadzadeh M. Focusing the temporally interfering electric fields in non-invasive deep brain stimulation [J]. Electron Lett, 2020, 56(25): 1401-1403.
|
| 33 |
Botzanowski B, Acerbo E, Lehmann S, et al. Focal control of non-invasive deep brain stimulation using multipolar temporal interference [J]. Bioelectron Med, 2025, 11(1): 7.
|
| 34 |
Lee S, Park J, Choi DS, et al. Multipair transcranial temporal interference stimulation for improved focalized stimulation of deep brain regions: a simulation study [J]. Comput Biol Med, 2022, 143: 105337.
|
| 35 |
Song X, Zhao X, Li X, et al. Multi-channel transcranial temporally interfering stimulation (tTIS): application to living mice brain [J]. J Neural Eng, 2021, 18(3): 036003.
|
| 36 |
Cao J, Grover P. STIMULUS: noninvasive dynamic patterns of neurostimulation using spatio-temporal interference [J]. IEEE Trans Biomed Eng, 2020, 67(3): 726-737.
|
| 37 |
Ahmadi K, Kok RL, Findeisen R. Surrogate model supported optimization of high-definition temporal interference stimulation [C]. Proceedings of the 2024 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2024.
|
| 38 |
Geng C, Li Y, Li L, et al. Optimized temporal interference stimulation based on convex optimization: a computational study [J]. IEEE Trans Neural Syst Rehabil Eng, 2025, 33: 1400-1410.
|
| 39 |
Stoupis D, Samaras T. Non-invasive stimulation with temporal interference: optimization of the electric field deep in the brain with the use of a genetic algorithm [J]. J Neural Eng, 2022, 19(5): 056018.
|
| 40 |
Zhu X, Li Y, Zheng L, et al. Multi-point temporal interference stimulation by using each electrode to carry different frequency currents [J]. IEEE Access, 2019, 7: 168839-168848.
|
| 41 |
Terasawa Y, Tashiro H, Ueno T, et al. Precise temporal control of interferential neural stimulation via phase modulation [J]. IEEE Trans Biomed Eng, 2022, 69(1): 220-228.
|
| 42 |
Luff CE, Dzialecka P, Acerbo E, et al. Pulse-width modulated temporal interference (PWM-TI) brain stimulation [J]. Brain Stimul, 2024, 17(1): 92-103.
|
| 43 |
Ahsan F, Chi T, Cho R, et al. EMvelop stimulation: minimally invasive deep brain stimulation using temporally interfering electromagnetic waves [J]. J Neural Eng, 2022, 19(4): 046005.
|
| 44 |
Wang H, Shi Z, Sun W, et al. Development of a non-invasive deep brain stimulator with precise positioning and real-time monitoring of bioimpedance [J]. Front Neuroinform, 2020, 14: 574189.
|
| 45 |
Zhang Z, Lin BS, Wu CWG, et al. Designing and pilot testing a novel transcranial temporal interference stimulation device for neuromodulation [J]. IEEE Trans Neural Syst Rehabil Eng, 2022, 30: 1483-1493.
|
| 46 |
Bai JH, Huang SC, Lee PL, et al. A high-frequency temporal-interference alternative current stimulation device using pulse amplitude modulation with push–pull current sources [J]. Bioengineering, 2025, 12(2): 164.
|
| 47 |
Qian R, Cao Z, Li B, et al. A voltage-controlled current source for temporal interference stimulation: analysis, design, and study [J]. Rev Sci Instrum, 2023, 94(8): 084708.
|
| 48 |
Ahsan F, Chi T, Cho R, et al. Non-invasive deep brain stimulation using electromagnetic waves [C]. Proceedings of the 2020 54th Asilomar Conference on Signals, Systems, and Computers, 2020.
|
| 49 |
Gou F, Yu H, Liu X, et al. Simulation and design of a rodent-specific transcranial magnetic stimulation coil based on the principle of temporal interference [J]. IEEE Trans Magn, 2025, 61(5): 1-9.
|
| 50 |
Missey F, Donahue MJ, Weber P, et al. Laser-driven wireless deep brain stimulation using temporal interference and organic electrolytic photocapacitors [J]. Adv Funct Mater, 2022, 32(33): 2200691.
|
| 51 |
Wu CW, Lin BS, Zhang Z, et al. Pilot study of using transcranial temporal interfering theta-burst stimulation for modulating motor excitability in rat [J]. J Neuroeng Rehabil, 2024, 21(1): 147.
|
| 52 |
Ma R, Xia X, Zhang W, et al. High gamma and beta temporal interference stimulation in the human motor cortex improves motor functions [J]. Front Neurosci, 2022, 15: 800436.
|
| 53 |
Zhu Z, Xiong Y, Chen Y, et al. Temporal interference (TI) stimulation boosts functional connectivity in human motor cortex: a comparison study with transcranial direct current stimulation (tDCS) [J]. Neural Plast, 2022, 2022(1): 7605046.
|
| 54 |
Wang Y, Zhu C, Zhou J, et al. 20 Hz temporal interference stimulation can more effectively enhance motor evoked potentials in the primary motor cortex [J]. Front Hum Neurosci, 2025, 19: 1524485.
|
| 55 |
Vassiliadis P, Beanato E, Popa T, et al. Non-invasive stimulation of the human striatum disrupts reinforcement learning of motor skills [J]. Nat Hum Behav, 2024, 8(8): 1581-1598.
|
| 56 |
Wessel MJ, Beanato E, Popa T, et al. Noninvasive theta-burst stimulation of the human striatum enhances striatal activity and motor skill learning [J]. Nat Neurosci, 2023, 26(11): 2005-2016.
|
| 57 |
Zhang Y, Zhou Z, Zhou J, et al. Temporal interference stimulation targeting right frontoparietal areas enhances working memory in healthy individuals [J]. Front Hum Neurosci, 2022, 16: 918470.
|
| 58 |
Zheng S, Zhang Y, Huang K, et al. Temporal interference stimulation boosts working memory performance in the frontoparietal network [J]. Hum Brain Mapp, 2025, 46(3): e70160.
|
| 59 |
Thiele C, Rufener KS, Repplinger S, et al. Transcranial temporal interference stimulation (tTIS) influences event-related alpha activity during mental rotation [J]. Psychophysiology, 2024, 61(11): e14651.
|
| 60 |
Beanato E, Moon HJ, Windel F, et al. Noninvasive modulation of the hippocampal-entorhinal complex during spatial navigation in humans [J]. Sci Adv, 2024, 10(44): eado4103.
|
| 61 |
Kurtin DL, Alania K, Rhodes E, et al. Task-related changes in resting state connectivity are affected by temporal interference (TI) stimulation [J]. Brain Stimul, 2025, 18(3): 937-947.
|
| 62 |
Lamoš M, Bočková M, Missey F, et al. Noninvasive temporal interference stimulation of the subthalamic nucleus in Parkinson's disease reduces beta activity [J]. Mov Disord, 2025, 40(6): 1051-1060.
|
| 63 |
Zhou H, Wang M, Qi S, et al. Efficacy and safety of transcranial temporal interference stimulation for treating bipolar disorder with depressive episodes [J]. medRxiv, 2024: 24317540.
|
| 64 |
Yan J, Pang C, Zhou S, et al. 280. Acute temporal interference stimulation of the left dorsolateral prefrontal cortex in patients with depression: first results of a double-blind controlled study [J]. Biol Psychiatry, 2024, 95(10): S214.
|
| 65 |
Demchenko I, Rampersad S, Datta A, et al. Target engagement of the subgenual anterior cingulate cortex with transcranial temporal interference stimulation in major depressive disorder: a protocol for a randomized sham-controlled trial [J]. Front Neurosci, 2024, 18: 1390250.
|
| 66 |
Missey F, Acerbo E, Dickey AS, et al. Non-invasive temporal interference stimulation of the hippocampus suppresses epileptic biomarkers in patients with epilepsy: biophysical differences between kilohertz and amplitude modulated stimulation [J]. medRxiv, 2025: 24303799.
|
| 67 |
Missey F, Rusina E, Acerbo E, et al. Orientation of temporal interference for non-invasive deep brain stimulation in epilepsy [J]. Front Neurosci, 2021, 15: 633988.
|
| 68 |
Mojiri Z, Rouhani E, Akhavan A, et al. Non-invasive temporal interference brain stimulation reduces preference on morphine-induced conditioned place preference in rats [J]. Sci Rep, 2024, 14(1): 21040.
|
| 69 |
Sunshine MD, Cassarà AM, Neufeld E, et al. Restoration of breathing after opioid overdose and spinal cord injury using temporal interference stimulation [J]. Commun Biol, 2021, 4(1): 107.
|
| 70 |
Missey F, Ejneby MS, Ngom I, et al. Obstructive sleep apnea improves with non-invasive hypoglossal nerve stimulation using temporal interference [J]. Bioelectron Med, 2023, 9(1): 18.
|
| 71 |
Botzanowski B, Donahue MJ, Ejneby MS, et al. Noninvasive stimulation of peripheral nerves using temporally-interfering electrical fields [J]. Adv Healthc Mater, 2022, 11(17): 2200075.
|
| 72 |
Von Conta J, Kasten FH, Ćurčić-Blake B, et al. Interindividual variability of electric fields during transcranial temporal interference stimulation (tTIS) [J]. Sci Rep, 2021, 11(1): 20357.
|
| 73 |
Yatsuda K, Fernández-Corazza M, Yu W, et al. Population-optimized electrode montage approximates individualized optimization in transcranial temporal interference stimulation [J]. Comput Biol Med, 2025, 192: 110223.
|
| 74 |
Esmaeilpour Z, Kronberg G, Reato D, et al. Temporal interference stimulation targets deep brain regions by modulating neural oscillations [J]. Brain Stimul, 2021, 14(1): 55-65.
|
| 75 |
Piao Y, Ma R, Weng Y, et al. Safety evaluation of employing temporal interference transcranial alternating current stimulation in human studies [J]. Brain Sci, 2022, 12(9): 1194.
|
| 76 |
Vassiliadis P, Stiennon E, Windel F, et al. Safety, tolerability and blinding efficiency of non-invasive deep transcranial temporal interference stimulation: first experience from more than 250 sessions [J]. J Neural Eng, 2024, 21(2): 024001.
|
| 77 |
Wang Y, Zeng GQ, Wang M, et al. The safety and efficacy of applying a high-current temporal interference electrical stimulation in humans [J]. Front Hum Neurosci, 2024, 18: 1484593.
|