切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2025, Vol. 19 ›› Issue (06) : 538 -545. doi: 10.3877/cma.j.issn.1673-9248.2025.06.013

综述

环状RNA对缺血性卒中调控作用的研究进展
林烨涛1, 黄浩淇1, 徐穗莲2, 古媚2, 何奕涛1,2,3,()   
  1. 1 518020 广东深圳,暨南大学第二临床医学院 深圳市人民医院神经内科
    2 518020 广东深圳,南方科技大学第一附属医院神经内科
    3 518036 广东深圳,北京大学深圳医院神经内科
  • 收稿日期:2025-07-17 出版日期:2025-12-01
  • 通信作者: 何奕涛
  • 基金资助:
    国家自然科学基金面上项目(82071463)

Research progress on the regulatory role of circular RNAs in ischemic stroke

Yetao Lin1, Haoqi Huang1, Suilian Xu2, Mei Gu2, Yitao He1,2,3,()   

  1. 1 Department of Neurology, Shenzhen People's Hospital, the Second Clinical Medical College of Ji’nan University, Shenzhen 518020, China
    2 Department of Neurology, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
    3 Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518036, China
  • Received:2025-07-17 Published:2025-12-01
  • Corresponding author: Yitao He
引用本文:

林烨涛, 黄浩淇, 徐穗莲, 古媚, 何奕涛. 环状RNA对缺血性卒中调控作用的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(06): 538-545.

Yetao Lin, Haoqi Huang, Suilian Xu, Mei Gu, Yitao He. Research progress on the regulatory role of circular RNAs in ischemic stroke[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2025, 19(06): 538-545.

缺血性卒中作为全球致残和致死的主要病因,其病理生理机制复杂,但静脉溶栓及机械取栓等治疗手段受限于严格的时间窗和适用范围,故亟须探索新型干预靶点。近年来,环状RNA(circRNA)因其高度稳定性、组织特异性及多靶点调控能力,逐渐成为缺血性卒中诊断和治疗的研究热点。因此,本文拟就circRNA在调节星形胶质细胞功能和神经元炎症损伤、调控细胞凋亡及铁死亡、调节脑血管功能与卒中后血管修复、影响内皮细胞功能与血脑屏障等关键环节中的调控作用进行综述,以指导进一步研究开展,探索改善缺血性卒中的治疗新靶点。

Ischemic stroke, as a major cause of disability and mortality worldwide, has a complex pathophysiological mechanism. However, current treatments such as intravenous thrombolysis and mechanical thrombectomy remain limited by narrow time windows and restricted eligibility. Therefore, it is urgent to explore new intervention targets. In recent years, circular RNA (circRNA) has gradually become a promising focus in the diagnosis and treatment of ischemic stroke due to its high stability, tissue specificity, and ability to regulate multiple pathways. Therefore, this article summarizes the regulatory role of circRNA in key links such as regulating astrocyte function and neuronal inflammatory injury, regulating apoptosis and ferroptosis, regulating cerebrovascular function and post-stroke vascular repair, and influencing endothelial cell function and blood-brain barrier integrity, in order to guide further research and explore new therapeutic targets for improving ischemic stroke.

图1 环状RNA(circRNA)在缺血性卒中中的调控作用 注:miRNA为微RNA;mRNA为信使RNA
表1 缺血性卒中中主要circRNA及其功能
保护性 促损伤性
circRNA名称 靶向miRNA/通路 功能简述 circRNA名称 靶向miRNA/通路 功能简述
circCNOT6L6 miR-99a-5p/SERPINE1 抑制星形胶质细胞凋亡,减轻缺血性卒中损伤 circMap2k111-12 miR-135b-5p/Pidd1 促进小胶质细胞活化,加重炎症反应
circ_00001157 miR-1224-5p/NOS3 减少神经元炎症和氧化应激 circNup18813 miR-760-3p/Map3k8 激活NF-κB炎症通路,加重神经炎症
circ_00008318 miR-16-5p/AdipoR2 减少神经炎症损伤 circZfp60914 miR-145a-5p/BACH1 促进星形胶质细胞凋亡
circPUM19 miR-340-5p/DDX5 减轻神经元损伤和炎症 circ_002994115 miR-224-5p/NFAT5 促进星形胶质细胞活化和自噬
circDLGAP410 miR-503-3p/NEGR1 促进细胞活力,抑制细胞死亡和炎症 circ000167916 miR-216/TLR4 促进神经元炎症和氧化应激
circRNA_000096423 miR-758-3p/ILK 抑制Caspase-3介导的神经元凋亡 circPTP4A217 STAT3 促进小胶质细胞极化,加重神经炎症
circAnks1b24 miR-130b-5p/Pak2 减少内质网应激和神经元凋亡 circ_010187419 miR-335-5p/PDE4D 促进神经元炎症、凋亡和氧化应激
circPRDX325 miR-641/NPR3 提高细胞存活率,减少凋亡和梗死体积 circ_2223220 miR-847-3p/Bmp1 促进中性粒细胞激活和炎症因子产生
circBBS226 miR-494/SLC7A11 抑制铁死亡,减轻缺血性损伤 circLOC37519030 miR-93-5p/mTORC1/TFEB 促进神经元凋亡和自噬
circ_000814627 miR-342-5p/ACSL4 促进铁死亡和氧化应激 circCRIM131 miR-141-3p/TXNIP 促进神经元凋亡
circFOXP128 STAT3 减少细胞凋亡 circ-Carm132 miR-3098-3p/ACSL4 促进铁死亡
circRap1b29 Hoxa5/Fam3a 抑制神经元凋亡 circCDC14A33 miR-23a-3p/CXCL12 促进细胞凋亡
circUCK237 FUS/HECTD1 抑制EMT,改善预后 circRIMS34 miR-96-5p/JAK/STAT1 促进细胞凋亡
circRNA_000330738 miRNA-191-5p/CDK6 促进血管生成、侵袭和迁移 circ_000001835 miR-871/BCL2L11 促进细胞凋亡
circSCMH139 m6A甲基化通路 促进血管修复,缓解缺血诱导效应 circHECTD141 miR-335/NOTCH2 促进EMT
circ_000676845 miR-222-3p/VEZF1 减轻BBB损伤 circPDS5B42 Runx1/ZNF24/VEGF-A 抑制血管生成
circ-FoxO346 mTORC1 促进自噬,维持BBB完整性 circPDS5B43 miR-223-3p/NOTCH2 抑制血管新生和修复
circOGDH47 外泌体传递COL4A4 增强BBB完整性 circFKBP348 miR-766-3p/TRAF3 促进HBMECs功能丧失和炎症
circRBM3349 miR-6838-5p/PDCD4 促进内皮细胞损伤,破坏BBB
circ-Memo150 miR-17-5p/SOS1 促进HBMECs损伤
circ_001072951 miR-665/ING5 促进HBMECs凋亡
circSEC11A52 miR-29a-3p/SEMA3A 促进HBMECs损伤和凋亡
circ_000554853 miR-362-3p/ETS1 促进HBMECs损伤
1
Choi SS, Kim SE, Oh SY, et al. Clinical implications of circulating circular RNAs in lung cancer [J]. Biomedicines, 2022, 10(4): 871.
2
Wang Y, Wo Y, Lu T, et al. Circ-AASDH functions as the progression of early stage lung adenocarcinoma by targeting miR-140-3p to activate E2F7 expression [J]. Transl Lung Cancer Res, 2021, 10(1): 57-70.
3
Wang Y, Zhang J, Yang Y, et al. Circular RNAs in human diseases [J]. Med Comm (2020), 2024, 5(9): e699.
4
Lee HG, Wheeler MA, Quintana FJ. Function and therapeutic value of astrocytes in neurological diseases [J]. Nat Rev Drug Discov, 2022, 21(5): 339-358.
5
Alsbrook DL, Di Napoli M, Bhatia K, et al. Neuroinflammation in acute ischemic and hemorrhagic stroke [J]. Curr Neurol Neurosci Rep, 2023, 23(8): 407-431.
6
He W, Gu L, Yang J, et al. Exosomal circCNOT6L regulates astrocyte apoptotic signals induced by hypoxia exposure through miR99a-5p/SERPINE1 and alleviates ischemic stroke injury [J]. Mol Neurobiol, 2023, 60(12): 7118-7135.
7
Cao Y, Xu Y, Zhang R, et al. Circ_0000115 protects against cerebral ischemia injury by suppressing neuronal apoptosis, oxidative stress and inflammation by miR-1224-5p/Nos3 axis in vitro [J]. Mol Biotechnol, 2024, 66(5): 1082-1094.
8
Huang R, Zhang W, Li W, et al. Overexpressing circ_0000831 is sufficient to inhibit neuroinflammation and vertigo in cerebral ischemia through a miR-16-5p-dependent mechanism [J]. Exp Neurol, 2022, 353: 114047.
9
Hu T, Li D, Fan T, et al. Circular RNA PUM1 performs as a competing endogenous RNA of microRNA-340-5p to mediate DEAD-box helicase 5 to mitigate cerebral ischemia-reperfusion injury [J]. Bioengineered, 2022, 13(5): 11564-11578.
10
Qiu L, He J, Chen H, et al. CircDLGAP4 overexpression relieves oxygen-glucose deprivation-induced neuronal injury by elevating NEGR1 through sponging miR-503-3p [J]. J Mol Histol, 2022, 53(2): 321-332.
11
He Y, Zhang H, Deng J, et al. The functions of fluoxetine and identification of fluoxetine-mediated circular RNAs and messenger RNAs in cerebral ischemic stroke [J]. Bioengineered, 2021, 12(1): 2364-2376.
12
He L, Zhang H, Deng J, et al. Fluoxetine-induced downregulation of circMap2k1 signaling cascade to improve neurological function after ischemic stroke [J]. Fundam Clin Pharmacol, 2025, 39(1): e13048.
13
Zhang H, Deng J, Huang K, et al. circNup188/miR-760-3p/Map3k8 axis regulates inflammation in cerebral ischemia [J]. Mol Cell Probes, 2022, 64: 101830.
14
Zhou Z, Wang X, Hu Q, et al. CircZfp609 contributes to cerebral infarction via sponging miR-145a-5p to regulate BACH1 [J]. Metab Brain Dis, 2023, 38(6): 1971-1981.
15
Jiang C, Liu H, Peng J, et al. EIF4A3-induced circ_0029941 promotes astrocyte activation through enhancing autophagy via miR-224-5p/NFAT5 axis [J]. Mol Neurobiol, 2025, 62(7): 9175-9189.
16
Zhang C, Li L, Wang F, et al. Inhibition of circ0001679 alleviates ischemia/reperfusion-induced brain injury via miR-216/TLR4 regulatory axis [J]. Curr Neurovasc Res, 2025, 21(4): 472-482.
17
Wang X, Zhang S, Lv B, et al. Circular RNA PTP4A2 regulates microglial polarization through STAT3 to promote neuroinflammation in ischemic stroke [J]. CNS Neurosci Ther, 2024, 30(4): e14512.
18
Wang X, Zhang S, Zhang Z, et al. Increased plasma levels of circPTP4A2 and circTLK2 are associated with stroke injury [J]. Ann Clin Transl Neurol, 2023, 10(8): 1481-1492.
19
Pei L, Xu X, Yuan T. Circ_0101874 overexpression strengthens PDE4D expression by targeting miR-335-5p to promote neuronal injury in ischemic stroke [J]. J Stroke Cerebrovasc Dis, 2022, 31(12): 106817.
20
Sun Z, Zhou Y, Liu Y, et al. Transcriptome-wide analysis of neutrophil-related circ_22232 in neuroinflammation from ischemic stroke mice [J]. Brain Sci, 2023, 13(9): 1283.
21
Du B, Deng Z, Chen K, et al. Iron promotes both ferroptosis and necroptosis in the early stage of reperfusion in ischemic stroke [J]. Genes Dis, 2024, 11(6): 101262.
22
Wang J, Lv C, Wei X, et al. Molecular mechanisms and therapeutic strategies for ferroptosis and cuproptosis in ischemic stroke [J]. Brain Behav Immun Health, 2024, 40: 100837.
23
Min X, Bai X, Zhao Q, et al. miR-758-3p interferes with neuronal apoptosis in cerebral ischemia-reperfusion by inhibiting ILK [J]. Mol Neurobiol, 2025, 62(6): 7805-7819.
24
Yang X, Mu Y, Feng Y, et al. Physical exercise-induced circAnks1b upregulation promotes protective endoplasmic reticulum stress and suppresses apoptosis via miR-130b-5p/Pak2 signaling in an ischemic stroke model [J]. CNS Neurosci Ther, 2024, 30(9): e70055.
25
Chen W, Zhang Y, Yin M, et al. Circular RNA circPRDX3 mediates neuronal survival apoptosis in ischemic stroke by targeting miR-641 and NPR3 [J]. Brain Res, 2022, 1797: 148114.
26
Hong T, Zhao T, He W, et al. Exosomal circBBS2 inhibits ferroptosis by targeting miR-494 to activate SLC7A11 signaling in ischemic stroke [J]. FASEB J, 2023, 37(9): e23152.
27
Liu CD, Peng Q, Wang SY, et al. Circ_0008146 exacerbates ferroptosis via regulating the miR-342-5p/ACSL4 axis after cerebral ischemic/reperfusion [J]. J Inflamm Res, 2024, 17: 4957-4973.
28
Yang J, He W, Gu L, et al. CircFOXP1 alleviates brain injury after acute ischemic stroke by regulating STAT3/apoptotic signaling [J]. Transl Res, 2023, 257: 15-29.
29
Zhang FF, Zhang L, Zhao L, et al. The circular RNA Rap1b promotes Hoxa5 transcription by recruiting Kat7 and leading to increased Fam3a expression, which inhibits neuronal apoptosis in acute ischemic stroke [J]. Neural Regen Res, 2023, 18(10): 2237-2245.
30
Liu Q, Zhang L, Xu X. circLOC375190 promotes autophagy through modulation of the mTORC1/TFEB axis in acute ischemic stroke-induced neurological injury [J]. Clinics (Sao Paulo), 2025, 80: 100581.
31
Hu T, Li D, Fan T, et al. CircCRIM1/microRNA-141-3p/thioredoxin-binding protein axis mediates neuronal apoptosis after cerebral ischemia-reperfusion [J]. Environ Toxicol, 2023, 38(12): 2845-2856.
32
Mao R, Liu H. Depletion of mmu_circ_0001751 (circular RNA Carm1) protects against acute cerebral infarction injuries by binding with microRNA-3098-3p to regulate acyl-CoA synthetase long-chain family member 4 [J]. Bioengineered, 2022, 13(2): 4063-4075.
33
Huo H, Hu C, Lu Y, et al. Silencing of circCDC14A prevents cerebral ischemia-reperfusion injury via miR-23a-3p/CXCL12 axis [J]. J Biochem Mol Toxicol, 2022, 36(4): e22982.
34
Li W, Xie L, Wang L, et al. CircRIMS promotes cerebral ischemia-reperfusion injury through increasing apoptosis and targeting the miR-96-5p/JAK/STAT1 axis [J]. Brain Inj, 2023, 37(11): 1235-1244.
35
Jiang M, Wang XB, Jiang S. circ_0000018 downregulation peripherally ameliorates neuroprotection against acute ischemic stroke through the miR-871/BCL2L11 axis [J]. Mol Med Rep, 2023, 28(5): 220.
36
Duncan PW, Bushnell C, Sissine M, et al. Comprehensive stroke care and outcomes: time for a paradigm shift [J]. Stroke, 2021, 52(1): 385-393.
37
Zhuang JH, Chen HX, Gao N, et al. CircUCK2 regulates HECTD1-mediated endothelial-mesenchymal transition inhibition by interacting with FUS and protects the blood-brain barrier in ischemic stroke [J]. Kaohsiung J Med Sci, 2023, 39(1): 40-51.
38
Wu Y, Zheng Z, Bai X, et al. CircRNA_0003307 promoted brain microvascular endothelial cell angiogenesis, invasion, and migration in cerebral ischemia-reperfusion injury: Potential involvement of miRNA-191-5p/CDK6 pathway [J]. Neuroscience, 2024, 560: 77-89.
39
Li B, Xi W, Bai Y, et al. FTO-dependent m6A modification of Plpp3 in circSCMH1-regulated vascular repair and functional recovery following stroke [J]. Nat Commun, 2023, 14(1): 489.
40
Jia Y, Xu L, Leng S, et al. Nose-to-brain delivery of circular RNA SCMH1-loaded lipid nanoparticles for ischemic stroke therapy [J]. Adv Mater, 2025, 37(19): e2500598.
41
He GH, Wang Z, Xu W, et al. Knockdown of circHECTD1 inhibits oxygen-glucose deprivation and reperfusion induced endothelial-mesenchymal transition [J]. Metab Brain Dis, 2022, 37(2): 427-437.
42
Jiang Z, Jiang Y. Circular RNA CircPDS5B impairs angiogenesis following ischemic stroke through its interaction with hnRNPL to inactivate VEGF-A [J]. Neurobiol Dis, 2023, 181: 106080.
43
Kui L, Li Z, Wang G, et al. CircPDS5B reduction improves angiogenesis following ischemic stroke by regulating microRNA-223-3p/NOTCH2 axis [J]. Neurol Genet, 2023, 9(3): e200074.
44
Castillo-González J, González-Rey E. Beyond wrecking a wall: revisiting the concept of blood-brain barrier breakdown in ischemic stroke [J]. Neural Regen Res, 2025, 20(7): 1944-1956.
45
Li J, Wang J, Wang Z. Circ_0006768 upregulation attenuates oxygen-glucose deprivation/reoxygenation-induced human brain microvascular endothelial cell injuries by upregulating VEZF1 via miR-222-3p inhibition [J]. Metab Brain Dis, 2021, 36(8): 2521-2534.
46
Yang Z, Huang C, Wen X, et al. Circular RNA circ-FoxO3 attenuates blood-brain barrier damage by inducing autophagy during ischemia/reperfusion [J]. Mol Ther, 2022, 30(3): 1275-1287.
47
Chen W, Wu Y, Liang Y, et al. Small extracellular vesicles from hypoxia-neuron maintain blood-brain barrier integrity [J]. Stroke, 2025, 56(6): 1569-1580.
48
Wang W, Cheng W, Wang X, et al. CircFKBP3 absence alleviates oxygen glucose deprivation-induced function loss of human brain microvascular endothelial cells in vitro via governing the miR-766-3p/TRAF3 axis [J]. Int J Neurosci, 2025, 135(1): 1-12.
49
Zhang Y, Yuan X, Xu J, et al. CircRBM33 induces endothelial dysfunction by targeting the miR-6838-5p/PDCD4 axis affecting blood-brain barrier in mice with cerebral ischemia-reperfusion injury [J]. Clin Hemorheol Microcirc, 2023, 85(4): 355-370.
50
Ren X, Jing YX, Zhou ZW, et al. Knockdown of circRNA-memo1 reduces hypoxia/reoxygenation injury in human brain endothelial cells through miRNA-17-5p/SOS1 axis [J]. Mol Neurobiol, 2022, 59(4): 2085-2097.
51
Ouyang X, Shi G, Wang S, et al. Hsa_circ_0010729 is involved in oxygen-glucose deprivation/reoxygenation-induced human microvascular endothelial cell deprivation by targeting miR-665/ING5 [J]. Biochem Genet, 2022, 60(6): 2455-2470.
52
Zhou Z, Hu Q, Guo H, et al. CircSEC11A knockdown alleviates oxidative stress and apoptosis and promotes cell proliferation and angiogenesis by regulating miR-29a-3p/SEMA3A axis in OGD-induced human brain microvascular endothelial cells (HBMECs) [J]. Clin Hemorheol Microcirc, 2023, 84(3): 247-262.
53
Chen C, Xu J, Huang T, et al. Hsa_circ_0005548 knockdown repairs OGD/R-induced damage in human brain microvascular endothelial cells via miR-362-3p/ETS1 axis [J]. Int J Neurosci, 2024, 134(10): 1139-1148.
[1] 胡博文, 胡亚兰, 梁辉. 前列腺癌早期筛查的常见方法及最新研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 800-808.
[2] 程必盛, 吴芃. 2025EAU年会要点:微创、远程与精准泌尿外科的发展趋势[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 693-699.
[3] 李瑞芳, 王明帅, 邢念增. 循环肿瘤细胞在膀胱癌诊断和预后中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 705-713.
[4] 杜静怡, 徐兴祥. 结缔组织病相关间质性肺疾病与炎症相关信号通路的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 837-840.
[5] 唐雪飞, 蒋润民, 倪云峰, 雷杰, 王文辰, 赵雅波, 马首政, 姜涛. 小细胞肺癌和大细胞神经内分泌癌微生物群特征[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 721-726.
[6] 刘丽辉, 白玉新, 张进, 冯巍, 黄琰琰, 邹梦斯, 刘彩红. 血清生物标志物联合检测对支气管哮喘患儿生物靶向治疗效果的预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 796-801.
[7] 方兴保, 庞国莲, 李月宏, 蔡艳. 基于多组学分析MCAM在肝癌中表达及其与生存预后和免疫细胞浸润的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 716-724.
[8] 刘娜, 盛华, 高超. 机械通气与急性肾损伤:从机制到临床实践[J/OL]. 中华肾病研究电子杂志, 2025, 14(06): 345-350.
[9] 甘惠, 伍姿, 石迎春, 刘余, 杨政伟. 生物标志物用于老年髋部骨折患者谵妄风险预测的研究进展[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(06): 379-384.
[10] 贺方正, 吴涛, 廖长胜, 李锡勇, 牛萌煊, 韩鹏飞. 创伤后骨关节炎模型大鼠血浆中microRNA特征组学研究[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(05): 257-270.
[11] 姜宇丰, 张睿, 闵红巍. 全关节置换术后异位骨化的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 526-531.
[12] 侯雨函, 姜福金, 王苏贵. 膀胱癌免疫治疗的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 471-475.
[13] 徐元麒, 杨珊珊, 张忠玲. 急性缺血性卒中再灌注联合脑细胞保护治疗的策略[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(06): 463-466.
[14] 孙程贺, 田润杞, 王储, 李跃龙. 小窝蛋白-1对前循环大血管闭塞患者桥接治疗后颅内出血转化的预测价值[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(06): 483-489.
[15] 张克玲, 于丹. 急性缺血性卒中再灌注治疗的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(06): 532-537.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?