切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) doi: 10.3877/cma.j.issn.1673-9248.XXXX.XX.XXX

综述

类淋巴系统和硬膜淋巴管在颅内出血后脑积水的病理及治疗中的潜在作用
冉卉1, 王艳2,(), 王振宇1, 胡晓1, 蔡力1, 杨淋1   
  1. 1 554300 贵州 铜仁,铜仁市人民医院神经外科
    2 100191 北京大学第三医院医学创新研究院
  • 收稿日期:2025-04-15
  • 通信作者: 王艳
  • 基金资助:
    国家自然科学基金面上项目(82471329)

Potential role of the glymphatic system and meningeal lymphatic vessels in the pathology and treatment of post-hemorrhagic hydrocephalus

Hui Ran1, Yan Wang2,(), Zhenyu Wang1, Xiao Hu1, Li Cai1, Lin Yang1   

  1. 1 Department of Neurology, Tongren People's Hospital, Tongren, 554300, China
    2 Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
  • Received:2025-04-15
  • Corresponding author: Yan Wang
引用本文:

冉卉, 王艳, 王振宇, 胡晓, 蔡力, 杨淋. 类淋巴系统和硬膜淋巴管在颅内出血后脑积水的病理及治疗中的潜在作用[J/OL]. 中华脑血管病杂志(电子版), doi: 10.3877/cma.j.issn.1673-9248.XXXX.XX.XXX.

Hui Ran, Yan Wang, Zhenyu Wang, Xiao Hu, Li Cai, Lin Yang. Potential role of the glymphatic system and meningeal lymphatic vessels in the pathology and treatment of post-hemorrhagic hydrocephalus[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), doi: 10.3877/cma.j.issn.1673-9248.XXXX.XX.XXX.

脑积水是一种由脑脊液循环障碍引起的脑室系统异常扩张性疾病,其病理过程复杂,涉及脑脊液生成、流动及吸收的紊乱。颅内出血后脑积水尤为复杂,核心机制围绕脑脊液循环障碍和颅内压力失衡。近年来,类淋巴系统和硬膜淋巴管作为脑脊液清除的新通路受到关注,参与脑脊液和代谢废物的清除。颅内出血后,游离血红蛋白通过氧化应激下调星形胶质细胞水通道蛋白-4(AQP4)表达,铁离子沉积诱导硬膜淋巴管内皮细胞焦亡,导致类淋巴引流效率下降。此外,炎症激活和脑脊液通路阻塞进一步损害硬膜淋巴管的清除功能,共同加重脑室压力负荷,促进脑积水形成。类淋巴功能障碍可能不仅是继发改变,亦可能是脑积水的早期驱动因素,挑战了传统发病机制。未来研究需结合临床与动物模型,进一步阐明颅内淋巴系统在脑积水中的作用,并探索其作为潜在治疗靶点的可行性。

Hydrocephalus is a neurological disorder characterized by abnormal dilation of the ventricular system, resulting from impaired cerebrospinal fluid (CSF) circulation. Its pathophysiology involves complex disturbances in CSF production, flow, and absorption. Post-hemorrhagic hydrocephalus (PHH) represents a particularly complex form, where disrupted CSF circulation and intracranial pressure imbalance play central roles. Recent studies have identified the glymphatic system and meningeal lymphatic vessels (mLVs) as important alternative pathways for CSF clearance, facilitating the removal of CSF and metabolic waste. After intracranial hemorrhage, free hemoglobin triggers oxidative stress, which downregulates aquaporin-4 (AQP4) expression in astrocytes, while iron deposition induces ferroptosis in mLVs endothelial cells. These processes jointly reduce glymphatic drainage efficiency and impair CSF and interstitial fluid clearance. In addition, inflammatory activation and CSF pathway obstruction further compromise the clearance function of mLVs, exacerbating ventricular pressure and accelerating hydrocephalus progression. Evidence suggests that dysfunction of the glymphatic and meningeal lymphatic systems may act not only as a secondary consequence but also as an early driving factor in hydrocephalus development, challenging traditional pathophysiological models. Future research should integrate clinical and animal studies to clarify the role of intracranial lymphatic pathways in hydrocephalus and explore their potential as therapeutic targets.

表1 PHH分类及总结
图1 CSF在GS中的循环示意图 注:Aquaproin-4为水通道蛋白-4;CSF为脑脊液;GS为类淋巴系统。
表2 基于影像学的早期诊断和治疗监测标准
1
Zhang Q, Niu Y, Li Y, et al. Meningeal lymphatic drainage: novel insights into central nervous system disease [J]. Signal Transduct Target Ther, 2025, 10(1): 142.
2
Ang PS, Zhang DM, Azizi SA, et al. The glymphatic system and cerebral small vessel disease [J]. J Stroke Cerebrovasc Dis, 2024, 33(3): 107557.
3
Tan X, Chen J, Keep RF, et al. Prx2 (Peroxiredoxin 2) as a Cause of Hydrocephalus After Intraventricular Hemorrhage [J]. Stroke, 2020, 51(5): 1578-1586.
4
Chen T, Tan X, Xia F, et al. Hydrocephalus induced by intraventricular peroxiredoxin-2: the role of macrophages in the choroid plexus [J]. Biomolecules, 2021, 11(5): 654.
5
Mahta A, Katz PM, Kamel H, et al. Intracerebral hemorrhage with intraventricular extension and no hydrocephalus may not increase mortality or severe disability [J]. J Clin Neurosci, 2016, 30: 56-59.
6
Kilic M, Yilmaz I, Tanriverdi O, et al. Factors that affect postoperative hydrocephalus development in aneurysmal subarachnoid hemorrhage: a clinical study [J]. Turk Neurosurg, 2017, 27(3): 353-361.
7
Chen S, Luo J, Reis C, et al. Hydrocephalus after subarachnoid hemorrhage: pathophysiology, diagnosis, and treatment [J]. Biomed Res Int, 2017, 2017: 8584753.
8
Tully HM, Dobyns WB. Infantile hydrocephalus: a review of epidemiology, classification and causes [J]. Eur J Med Genet, 2014, 57(8): 359-368.
9
Strahle J, Garton HJ, Maher CO, et al. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage [J]. Transl Stroke Res, 2012, 3(Suppl 1): 25-38.
10
Staykov D, Bardutzky J, Huttner HB, et al. Intraventricular fibrinolysis for intracerebral hemorrhage with severe ventricular involvement [J]. Neurocrit Care, 2011, 15(1): 194-209.
11
Kuo LT, Huang AP. The pathogenesis of hydrocephalus following aneurysmal subarachnoid hemorrhage [J]. Int J Mol Sci, 2021, 22(9): 4461.
12
Roblot P, Mollier O, Ollivier M, et al. Communicating chronic hydrocephalus: A review [J]. Rev Med Interne, 2021, 42(11): 781-788.
13
Hord ED, 李卉, 潘速跃. 脑积水 [J]. 国际脑血管病杂志, 2006, 14(12): 941-947.
14
Hasan-Olive MM, Enger R, Hansson HA, et al. Loss of perivascular aquaporin-4 in idiopathic normal pressure hydrocephalus [J]. Glia, 2019, 67(1): 91-100.
15
Bonney PA, Briggs RG, Wu K, et al. Pathophysiological mechanisms underlying idiopathic normal pressure hydrocephalus: a review of recent insights [J]. Front Aging Neurosci, 2022, 14: 866313.
16
Shapey J, Toma A, Saeed SR. Physiology of cerebrospinal fluid circulation [J]. Curr Opin Otolaryngol Head Neck Surg, 2019, 27(5): 326-333.
17
Shetty AK, Zanirati G. The interstitial system of the brain in health and disease [J]. Aging Dis, 2020, 11(1): 200-211.
18
Cserr HF, Knopf PM. Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view [J]. Immunology Today, 1992, 13(12): 507-512.
19
Liao J, An Z, Cheng Q, et al. The glymphatic system: a new insight into the understanding of neurological diseases [J]. Brain-X, 2024, 2: e70011.
20
Ishida K, Yamada K, Nishiyama R, et al. Glymphatic system clears extracellular tau and protects from tau aggregation and neurodegeneration [J]. J Exp Med, 2022, 219(3): e20211275.
21
Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β [J]. Sci Transl Med, 2012, 4(147): 147ra111.
22
Kameya N, Sakai I, Saito K, et al. Evolutionary changes leading to efficient glymphatic circulation in the mammalian brain [J]. Nat Commun, 2024, 15(1): 10048.
23
Ringstad G, Eide PK. Glymphatic-lymphatic coupling: assessment of the evidence from magnetic resonance imaging of humans [J]. Cell Mol Life Sci, 2024, 81(1): 131.
24
Iliff JJ, Goldman SA, Nedergaard M. Implications of the discovery of brain lymphatic pathways [J]. Lancet Neurol, 2015, 14(10): 977-979.
25
Medawar PB. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye [J]. Br J Exp Pathol, 1948, 29(1): 58-69.
26
Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels [J]. Nature, 2015, 523(7560): 337-341.
27
Ahn JH, Cho H, Kim JH, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid [J]. Nature, 2019, 572(7767): 62-66.
28
Bèchet NB, Shanbhag NC, Lundgaard I. Glymphatic pathways in the gyrencephalic brain [J]. J Cereb Blood Flow Metab, 2021, 41(9): 2264-2279.
29
Mestre H, Tithof J, Du T, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension [J]. Nat Commun, 2018, 9(1): 4878.
30
Fang Y, Huang L, Wang X, et al. A new perspective on cerebrospinal fluid dynamics after subarachnoid hemorrhage: From normal physiology to pathophysiological changes [J]. J Cereb Blood Flow Metab, 2022, 42(4): 543-558.
31
Mestre H, Hablitz LM, Xavier AL, et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain [J]. Elife, 2018, 7: e40070.
32
Buccellato FR, D'Anca M, Serpente M, et al. The role of glymphatic system in Alzheimer's and Parkinson's disease pathogenesis [J]. Biomedicines, 2022, 10(9): 2289.
33
Yao D, Li R, Hao J, et al. Melatonin alleviates depression-like behaviors and cognitive dysfunction in mice by regulating the circadian rhythm of AQP4 polarization [J]. Transl Psychiatry, 2023, 13(1): 310.
34
Simon M, Wang MX, Ismail O, et al. Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid β plaque formation in mice [J]. Alzheimers Res Ther, 2022, 14(1): 59.
35
Hablitz LM, Plá V, Giannetto M, et al. Circadian control of brain glymphatic and lymphatic fluid flow [J]. Nat Commun, 2020, 11(1): 4411.
36
Ma Q, Decker Y, Riner CA, et al. Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain [J]. Acta Neuropathol, 2019, 137(1): 151-165.
37
Botta D, Hutuca I, Ghoul EE, et al. Emerging non-invasive MRI techniques for glymphatic system assessment in neurodegenerative disease [J]. J Neuroradiol, 2025, 52(3): 101322.
38
Wright AM, Wu YC, Feng L, et al. Diffusion magnetic resonance imaging of cerebrospinal fluid dynamics: Current techniques and future advancements [J]. NMR Biomed, 2024, 37(9): e5162.
39
Albayram MS, Smith G, Tufan F, et al. Non-invasive MR imaging of human brain lymphatic networks with connections to cervical lymph nodes [J]. Nat Commun, 2022, 13(1): 203.
40
Xu JQ, Liu QQ, Huang SY, et al. The lymphatic system: a therapeutic target for central nervous system disorders [J]. Neural Regen Res, 2023, 18(6): 1249-1256.
41
Boland B, Yu WH, Corti O, et al. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing [J]. Nat Rev Drug Discov, 2018, 17(9): 660-688.
42
Yano K, Matsumoto T, Okamoto Y, et al. Fabrication of Gd-DOTA-functionalized carboxylated nanodiamonds for selective MR imaging (MRI) of the lymphatic system [J]. Nanotechnology, 2021, 32(23): 235101.
43
Lee S, Yoo RE, Choi SH, et al. Contrast-enhanced MRI T1 mapping for quantitative evaluation of putative dynamic glymphatic activity in the human brain in sleep-wake states [J]. Radiology, 2021, 300(3): 661-668.
44
van der Thiel MM, Backes WH, Ramakers I, et al. Novel developments in non-contrast enhanced MRI of the perivascular clearance system: What are the possibilities for Alzheimer's disease research? [J]. Neurosci Biobehav Rev, 2023, 144: 104999.
45
Taoka T, Masutani Y, Kawai H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases [J]. Jpn J Radiol, 2017, 35(4): 172-178.
46
Kandimalla M, Lim S, Thakkar J, et al. Cardiorespiratory dynamics in the brain: Review on the significance of cardiovascular and respiratory correlates in functional MRI signal [J]. Neuroimage, 2025, 306: 121000.
47
Zhong J, Li G, Lv Z, et al. Neuromodulation of cerebral blood flow: a physiological mechanism and methodological review of neurovascular coupling [J]. Bioengineering (Basel), 2025, 12(5): 412.
48
Macdonald RL, Rosengart A, Huo D, et al. Factors associated with the development of vasospasm after planned surgical treatment of aneurysmal subarachnoid hemorrhage [J]. J Neurosurg, 2003, 99(4): 644-652.
49
Huang SY, Zhang YR, Guo Y, et al. Glymphatic system dysfunction predicts amyloid deposition, neurodegeneration, and clinical progression in Alzheimer's disease [J]. Alzheimers Dement, 2024, 20(5): 3251-3269.
50
Zhou W, Shen B, Shen WQ, et al. Dysfunction of the glymphatic system might be related to iron deposition in the normal aging brain [J]. Front Aging Neurosci, 2020, 12: 581965.
51
Wang Y, Yang M, Zeng X, et al. Glymphatic dysfunction assessed by DTI-ALPS index predicts early cognitive impairment in acute subcortical infarcts: a prospective clinical cohort study [J]. Front Neurol, 2025, 16: 1605889.
52
Pan S, Hale AT, Lemieux ME, et al. Iron homeostasis and post-hemorrhagic hydrocephalus: a review [J]. Front Neurol, 2023, 14: 1287559.
53
Si X, Guo T, Wang Z, et al. Neuroimaging evidence of glymphatic system dysfunction in possible REM sleep behavior disorder and Parkinson's disease [J]. NPJ Parkinsons Dis, 2022, 8(1): 54.
54
Staykov D, Kuramatsu JB, Bardutzky J, et al. Efficacy and safety of combined intraventricular fibrinolysis with lumbar drainage for prevention of permanent shunt dependency after intracerebral hemorrhage with severe ventricular involvement: A randomized trial and individual patient data Meta-analysis [J]. Ann Neurol, 2017, 81(1): 93-103.
55
Wilson TJ, Stetler WR Jr, Davis MC, et al. Intraventricular hemorrhage is associated with early hydrocephalus, symptomatic vasospasm, and poor outcome in aneurysmal subarachnoid hemorrhage [J]. J Neurol Surg A Cent Eur Neurosurg, 2015, 76(2): 126-132.
56
Gaberel T, Gakuba C, Goulay R, et al. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? [J]. Stroke, 2014, 45(10): 3092-3096.
57
Mandava P, Martini SR, Munoz M, et al. Hyperglycemia worsens outcome after rt-PA primarily in the large-vessel occlusive stroke subtype [J]. Transl Stroke Res, 2014, 5(4): 519-525.
58
Yang F, Wang Z, Shi W, et al. Advancing insights into in vivo meningeal lymphatic vessels with stereoscopic wide-field photoacoustic microscopy [J]. Light Sci Appl, 2024, 13(1): 96.
59
Chen S, Wang H, Zhang L, et al. Glymphatic system: a self-purification circulation in brain [J]. Front Cell Neurosci, 2025, 19: 1528995.
60
Sun YR, Lv QK, Liu JY, et al. New perspectives on the glymphatic system and the relationship between glymphatic system and neurodegenerative diseases [J]. Neurobiol Dis, 2025, 205: 106791.
61
Lian X, Liu Z, Gan Z, et al. Targeting the glymphatic system to promote α-synuclein clearance: a novel therapeutic strategy for Parkinson's disease [J]. Neural Regen Res, 2026, 21(1): 233-247.
62
Inès RHB, Keliris AJ, Vanreusel V, et al. Altered dynamics of glymphatic flow in a mature-onset Tet-off APP mouse model of amyloidosis [J]. Alzheimers Res Ther, 2023, 15(1): 23.
63
Bian C, Wan Y, Koduri S, et al. Iron-induced hydrocephalus: the role of choroid plexus stromal macrophages [J]. Transl Stroke Res, 2023, 14(2): 238-249.
64
Holste KG, Xia F, Ye F, et al. Mechanisms of neuroinflammation in hydrocephalus after intraventricular hemorrhage: a review [J]. Fluids Barriers CNS, 2022, 19(1): 28.
65
Tang J, Jila S, Luo T, et al. C3/C3aR inhibition alleviates GMH-IVH-induced hydrocephalus by preventing microglia-astrocyte interactions in neonatal rats [J]. Neuropharmacology, 2022, 205: 108927.
66
Wan Y, Fu X, Zhang T, et al. Choroid plexus immune cell response in murine hydrocephalus induced by intraventricular hemorrhage [J]. Fluids Barriers CNS, 2024, 21(1): 21.
67
Xu J, Liu X, Chen J, et al. Simvastatin enhances bone marrow stromal cell differentiation into endothelial cells via notch signaling pathway [J]. Am J Physiol Cell Physiol, 2009, 296(3): C535-C543.
[1] 夏忆, 周敏, 罗晓波, 舒慧英, 高钰, 李丹. 首发及复发伴颅内出血的儿童变异型急性早幼粒细胞白血病1例并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(06): 700-706.
[2] 张雯, 张彦春, 刘凯波, 徐宏燕. 北京市胎儿先天性脑积水的产前MRI诊断及围产期转归[J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 345-349.
[3] 张明光, 李斌飞, 吴少花. 婴幼儿颈部通路体外膜肺氧合相关性出血并发症分析[J/OL]. 中华普通外科学文献(电子版), 2022, 16(04): 282-285.
[4] 李继业, 张军, 吴明星, 宋伟, 邸飞. 腹腔镜治疗婴幼儿脑室腹腔分流术后镰状韧带囊肿[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(02): 121-124.
[5] 王柠, 王佳伟, 刘旭阳. 重视眼颅压力差在多学科领域的应用[J/OL]. 中华眼科医学杂志(电子版), 2022, 12(06): 321-325.
[6] 刘硕, 吉文玉, 秦虎, 汪永新. 脑室出血继发脑积水相关发病机制及治疗研究进展[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(03): 192-196.
[7] 吴东阳, 赵玉龙, 文安国, 李俊之, 纪鑫, 赵明光. 重型颅脑损伤患者术后血钠水平变化规律对继发性脑积水的预测价值[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(01): 32-39.
[8] 聂玉金, 曹培成. 创伤性颅脑损伤患者保守治疗发生脑积水的危险因素分析[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(06): 355-359.
[9] 王奎重, 王天助, 袁冶, 胡金娜, 杜嘉庚, 袁绍纪. 三维重建术前计划在经侧脑室后角穿刺脑室-腹腔分流术中的应用[J/OL]. 中华神经创伤外科电子杂志, 2022, 08(06): 361-364.
[10] 吴晓凡, 罗书引, 冯二艳. 交通性脑积水脑室-腹腔分流术后迟发性颅内出血发生风险的列线图预测模型构建与评估[J/OL]. 中华神经创伤外科电子杂志, 2022, 08(05): 276-281.
[11] 初晨宇, 吕学明, 朱伟杰, 孙新同, 李凯, 徐强. 蛛网膜囊肿合并脑内血肿一例报道并文献复习[J/OL]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 315-318.
[12] 罗力冰, 李之朋, 刘镭, 徐跃, 谢娜. 华法林相关性胎儿颅内出血一例并文献复习[J/OL]. 中华产科急救电子杂志, 2023, 12(04): 233-238.
[13] 袁紫嫣, 姚春玲, 石江伟. 基于大脑类淋巴系统清除机制探讨针刺治疗阿尔茨海默病的研究进展[J/OL]. 中华针灸电子杂志, 2025, 14(01): 28-33.
[14] 陆东生, 谭家亮, 孙祯卿, 付东翔, 谷宇, 徐海通. 家族性烟雾病二例报告[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(03): 270-273.
[15] 胡平, 鄢腾峰, 周海柱, 祝新根. 人工智能在非增强CT图像中颅内出血早期检出和血肿分割的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(04): 410-416.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?