| 1 |
Zhang Q, Niu Y, Li Y, et al. Meningeal lymphatic drainage: novel insights into central nervous system disease [J]. Signal Transduct Target Ther, 2025, 10(1): 142.
|
| 2 |
Ang PS, Zhang DM, Azizi SA, et al. The glymphatic system and cerebral small vessel disease [J]. J Stroke Cerebrovasc Dis, 2024, 33(3): 107557.
|
| 3 |
Tan X, Chen J, Keep RF, et al. Prx2 (Peroxiredoxin 2) as a Cause of Hydrocephalus After Intraventricular Hemorrhage [J]. Stroke, 2020, 51(5): 1578-1586.
|
| 4 |
Chen T, Tan X, Xia F, et al. Hydrocephalus induced by intraventricular peroxiredoxin-2: the role of macrophages in the choroid plexus [J]. Biomolecules, 2021, 11(5): 654.
|
| 5 |
Mahta A, Katz PM, Kamel H, et al. Intracerebral hemorrhage with intraventricular extension and no hydrocephalus may not increase mortality or severe disability [J]. J Clin Neurosci, 2016, 30: 56-59.
|
| 6 |
Kilic M, Yilmaz I, Tanriverdi O, et al. Factors that affect postoperative hydrocephalus development in aneurysmal subarachnoid hemorrhage: a clinical study [J]. Turk Neurosurg, 2017, 27(3): 353-361.
|
| 7 |
Chen S, Luo J, Reis C, et al. Hydrocephalus after subarachnoid hemorrhage: pathophysiology, diagnosis, and treatment [J]. Biomed Res Int, 2017, 2017: 8584753.
|
| 8 |
Tully HM, Dobyns WB. Infantile hydrocephalus: a review of epidemiology, classification and causes [J]. Eur J Med Genet, 2014, 57(8): 359-368.
|
| 9 |
Strahle J, Garton HJ, Maher CO, et al. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage [J]. Transl Stroke Res, 2012, 3(Suppl 1): 25-38.
|
| 10 |
Staykov D, Bardutzky J, Huttner HB, et al. Intraventricular fibrinolysis for intracerebral hemorrhage with severe ventricular involvement [J]. Neurocrit Care, 2011, 15(1): 194-209.
|
| 11 |
Kuo LT, Huang AP. The pathogenesis of hydrocephalus following aneurysmal subarachnoid hemorrhage [J]. Int J Mol Sci, 2021, 22(9): 4461.
|
| 12 |
Roblot P, Mollier O, Ollivier M, et al. Communicating chronic hydrocephalus: A review [J]. Rev Med Interne, 2021, 42(11): 781-788.
|
| 13 |
Hord ED, 李卉, 潘速跃. 脑积水 [J]. 国际脑血管病杂志, 2006, 14(12): 941-947.
|
| 14 |
Hasan-Olive MM, Enger R, Hansson HA, et al. Loss of perivascular aquaporin-4 in idiopathic normal pressure hydrocephalus [J]. Glia, 2019, 67(1): 91-100.
|
| 15 |
Bonney PA, Briggs RG, Wu K, et al. Pathophysiological mechanisms underlying idiopathic normal pressure hydrocephalus: a review of recent insights [J]. Front Aging Neurosci, 2022, 14: 866313.
|
| 16 |
Shapey J, Toma A, Saeed SR. Physiology of cerebrospinal fluid circulation [J]. Curr Opin Otolaryngol Head Neck Surg, 2019, 27(5): 326-333.
|
| 17 |
Shetty AK, Zanirati G. The interstitial system of the brain in health and disease [J]. Aging Dis, 2020, 11(1): 200-211.
|
| 18 |
Cserr HF, Knopf PM. Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view [J]. Immunology Today, 1992, 13(12): 507-512.
|
| 19 |
Liao J, An Z, Cheng Q, et al. The glymphatic system: a new insight into the understanding of neurological diseases [J]. Brain-X, 2024, 2: e70011.
|
| 20 |
Ishida K, Yamada K, Nishiyama R, et al. Glymphatic system clears extracellular tau and protects from tau aggregation and neurodegeneration [J]. J Exp Med, 2022, 219(3): e20211275.
|
| 21 |
Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β [J]. Sci Transl Med, 2012, 4(147): 147ra111.
|
| 22 |
Kameya N, Sakai I, Saito K, et al. Evolutionary changes leading to efficient glymphatic circulation in the mammalian brain [J]. Nat Commun, 2024, 15(1): 10048.
|
| 23 |
Ringstad G, Eide PK. Glymphatic-lymphatic coupling: assessment of the evidence from magnetic resonance imaging of humans [J]. Cell Mol Life Sci, 2024, 81(1): 131.
|
| 24 |
Iliff JJ, Goldman SA, Nedergaard M. Implications of the discovery of brain lymphatic pathways [J]. Lancet Neurol, 2015, 14(10): 977-979.
|
| 25 |
Medawar PB. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye [J]. Br J Exp Pathol, 1948, 29(1): 58-69.
|
| 26 |
Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels [J]. Nature, 2015, 523(7560): 337-341.
|
| 27 |
Ahn JH, Cho H, Kim JH, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid [J]. Nature, 2019, 572(7767): 62-66.
|
| 28 |
Bèchet NB, Shanbhag NC, Lundgaard I. Glymphatic pathways in the gyrencephalic brain [J]. J Cereb Blood Flow Metab, 2021, 41(9): 2264-2279.
|
| 29 |
Mestre H, Tithof J, Du T, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension [J]. Nat Commun, 2018, 9(1): 4878.
|
| 30 |
Fang Y, Huang L, Wang X, et al. A new perspective on cerebrospinal fluid dynamics after subarachnoid hemorrhage: From normal physiology to pathophysiological changes [J]. J Cereb Blood Flow Metab, 2022, 42(4): 543-558.
|
| 31 |
Mestre H, Hablitz LM, Xavier AL, et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain [J]. Elife, 2018, 7: e40070.
|
| 32 |
Buccellato FR, D'Anca M, Serpente M, et al. The role of glymphatic system in Alzheimer's and Parkinson's disease pathogenesis [J]. Biomedicines, 2022, 10(9): 2289.
|
| 33 |
Yao D, Li R, Hao J, et al. Melatonin alleviates depression-like behaviors and cognitive dysfunction in mice by regulating the circadian rhythm of AQP4 polarization [J]. Transl Psychiatry, 2023, 13(1): 310.
|
| 34 |
Simon M, Wang MX, Ismail O, et al. Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid β plaque formation in mice [J]. Alzheimers Res Ther, 2022, 14(1): 59.
|
| 35 |
Hablitz LM, Plá V, Giannetto M, et al. Circadian control of brain glymphatic and lymphatic fluid flow [J]. Nat Commun, 2020, 11(1): 4411.
|
| 36 |
Ma Q, Decker Y, Riner CA, et al. Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain [J]. Acta Neuropathol, 2019, 137(1): 151-165.
|
| 37 |
Botta D, Hutuca I, Ghoul EE, et al. Emerging non-invasive MRI techniques for glymphatic system assessment in neurodegenerative disease [J]. J Neuroradiol, 2025, 52(3): 101322.
|
| 38 |
Wright AM, Wu YC, Feng L, et al. Diffusion magnetic resonance imaging of cerebrospinal fluid dynamics: Current techniques and future advancements [J]. NMR Biomed, 2024, 37(9): e5162.
|
| 39 |
Albayram MS, Smith G, Tufan F, et al. Non-invasive MR imaging of human brain lymphatic networks with connections to cervical lymph nodes [J]. Nat Commun, 2022, 13(1): 203.
|
| 40 |
Xu JQ, Liu QQ, Huang SY, et al. The lymphatic system: a therapeutic target for central nervous system disorders [J]. Neural Regen Res, 2023, 18(6): 1249-1256.
|
| 41 |
Boland B, Yu WH, Corti O, et al. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing [J]. Nat Rev Drug Discov, 2018, 17(9): 660-688.
|
| 42 |
Yano K, Matsumoto T, Okamoto Y, et al. Fabrication of Gd-DOTA-functionalized carboxylated nanodiamonds for selective MR imaging (MRI) of the lymphatic system [J]. Nanotechnology, 2021, 32(23): 235101.
|
| 43 |
Lee S, Yoo RE, Choi SH, et al. Contrast-enhanced MRI T1 mapping for quantitative evaluation of putative dynamic glymphatic activity in the human brain in sleep-wake states [J]. Radiology, 2021, 300(3): 661-668.
|
| 44 |
van der Thiel MM, Backes WH, Ramakers I, et al. Novel developments in non-contrast enhanced MRI of the perivascular clearance system: What are the possibilities for Alzheimer's disease research? [J]. Neurosci Biobehav Rev, 2023, 144: 104999.
|
| 45 |
Taoka T, Masutani Y, Kawai H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases [J]. Jpn J Radiol, 2017, 35(4): 172-178.
|
| 46 |
Kandimalla M, Lim S, Thakkar J, et al. Cardiorespiratory dynamics in the brain: Review on the significance of cardiovascular and respiratory correlates in functional MRI signal [J]. Neuroimage, 2025, 306: 121000.
|
| 47 |
Zhong J, Li G, Lv Z, et al. Neuromodulation of cerebral blood flow: a physiological mechanism and methodological review of neurovascular coupling [J]. Bioengineering (Basel), 2025, 12(5): 412.
|
| 48 |
Macdonald RL, Rosengart A, Huo D, et al. Factors associated with the development of vasospasm after planned surgical treatment of aneurysmal subarachnoid hemorrhage [J]. J Neurosurg, 2003, 99(4): 644-652.
|
| 49 |
Huang SY, Zhang YR, Guo Y, et al. Glymphatic system dysfunction predicts amyloid deposition, neurodegeneration, and clinical progression in Alzheimer's disease [J]. Alzheimers Dement, 2024, 20(5): 3251-3269.
|
| 50 |
Zhou W, Shen B, Shen WQ, et al. Dysfunction of the glymphatic system might be related to iron deposition in the normal aging brain [J]. Front Aging Neurosci, 2020, 12: 581965.
|
| 51 |
Wang Y, Yang M, Zeng X, et al. Glymphatic dysfunction assessed by DTI-ALPS index predicts early cognitive impairment in acute subcortical infarcts: a prospective clinical cohort study [J]. Front Neurol, 2025, 16: 1605889.
|
| 52 |
Pan S, Hale AT, Lemieux ME, et al. Iron homeostasis and post-hemorrhagic hydrocephalus: a review [J]. Front Neurol, 2023, 14: 1287559.
|
| 53 |
Si X, Guo T, Wang Z, et al. Neuroimaging evidence of glymphatic system dysfunction in possible REM sleep behavior disorder and Parkinson's disease [J]. NPJ Parkinsons Dis, 2022, 8(1): 54.
|
| 54 |
Staykov D, Kuramatsu JB, Bardutzky J, et al. Efficacy and safety of combined intraventricular fibrinolysis with lumbar drainage for prevention of permanent shunt dependency after intracerebral hemorrhage with severe ventricular involvement: A randomized trial and individual patient data Meta-analysis [J]. Ann Neurol, 2017, 81(1): 93-103.
|
| 55 |
Wilson TJ, Stetler WR Jr, Davis MC, et al. Intraventricular hemorrhage is associated with early hydrocephalus, symptomatic vasospasm, and poor outcome in aneurysmal subarachnoid hemorrhage [J]. J Neurol Surg A Cent Eur Neurosurg, 2015, 76(2): 126-132.
|
| 56 |
Gaberel T, Gakuba C, Goulay R, et al. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? [J]. Stroke, 2014, 45(10): 3092-3096.
|
| 57 |
Mandava P, Martini SR, Munoz M, et al. Hyperglycemia worsens outcome after rt-PA primarily in the large-vessel occlusive stroke subtype [J]. Transl Stroke Res, 2014, 5(4): 519-525.
|
| 58 |
Yang F, Wang Z, Shi W, et al. Advancing insights into in vivo meningeal lymphatic vessels with stereoscopic wide-field photoacoustic microscopy [J]. Light Sci Appl, 2024, 13(1): 96.
|
| 59 |
Chen S, Wang H, Zhang L, et al. Glymphatic system: a self-purification circulation in brain [J]. Front Cell Neurosci, 2025, 19: 1528995.
|
| 60 |
Sun YR, Lv QK, Liu JY, et al. New perspectives on the glymphatic system and the relationship between glymphatic system and neurodegenerative diseases [J]. Neurobiol Dis, 2025, 205: 106791.
|
| 61 |
Lian X, Liu Z, Gan Z, et al. Targeting the glymphatic system to promote α-synuclein clearance: a novel therapeutic strategy for Parkinson's disease [J]. Neural Regen Res, 2026, 21(1): 233-247.
|
| 62 |
Inès RHB, Keliris AJ, Vanreusel V, et al. Altered dynamics of glymphatic flow in a mature-onset Tet-off APP mouse model of amyloidosis [J]. Alzheimers Res Ther, 2023, 15(1): 23.
|
| 63 |
Bian C, Wan Y, Koduri S, et al. Iron-induced hydrocephalus: the role of choroid plexus stromal macrophages [J]. Transl Stroke Res, 2023, 14(2): 238-249.
|
| 64 |
Holste KG, Xia F, Ye F, et al. Mechanisms of neuroinflammation in hydrocephalus after intraventricular hemorrhage: a review [J]. Fluids Barriers CNS, 2022, 19(1): 28.
|
| 65 |
Tang J, Jila S, Luo T, et al. C3/C3aR inhibition alleviates GMH-IVH-induced hydrocephalus by preventing microglia-astrocyte interactions in neonatal rats [J]. Neuropharmacology, 2022, 205: 108927.
|
| 66 |
Wan Y, Fu X, Zhang T, et al. Choroid plexus immune cell response in murine hydrocephalus induced by intraventricular hemorrhage [J]. Fluids Barriers CNS, 2024, 21(1): 21.
|
| 67 |
Xu J, Liu X, Chen J, et al. Simvastatin enhances bone marrow stromal cell differentiation into endothelial cells via notch signaling pathway [J]. Am J Physiol Cell Physiol, 2009, 296(3): C535-C543.
|