切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2020, Vol. 14 ›› Issue (02) : 70 -75. doi: 10.11817/j.issn.1673-9248.2020.02.002

所属专题: 专家论坛 文献

专家论坛

目标体温管理在成人心脏骤停后脑复苏中应用的研究进展
李晓丹1, 马青变1,()   
  1. 1. 100191 北京大学第三医院急诊科
  • 收稿日期:2020-02-24 出版日期:2020-04-01
  • 通信作者: 马青变

Advances in the application of target temperature management in brain resuscitation after adult cardiac arrest

Xiaodan Li1, Qingbian Ma1,()   

  1. 1. Department of Emergency Medicine, Peking University Third Hospital, Beijing 100191, China
  • Received:2020-02-24 Published:2020-04-01
  • Corresponding author: Qingbian Ma
  • About author:
    Corresponding author: Ma Qingbian, Email:
引用本文:

李晓丹, 马青变. 目标体温管理在成人心脏骤停后脑复苏中应用的研究进展[J]. 中华脑血管病杂志(电子版), 2020, 14(02): 70-75.

Xiaodan Li, Qingbian Ma. Advances in the application of target temperature management in brain resuscitation after adult cardiac arrest[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2020, 14(02): 70-75.

脑损伤是心脏骤停自主循环恢复后患者死亡的重要原因。目标体温管理(TTM)可以通过降低患者脑代谢和减轻全身缺血/再灌注反应而减少由心脏停搏后综合征引起的脑损伤,被国际复苏指南推荐为心脏骤停后的脑复苏治疗。但是,关于TTM在脑复苏中的最佳使用方法和应用范围仍存在一定争议,而用于预测患者神经功能转归的标志物也在不断地被发现和验证。本文对近年来TTM在成人心脏骤停后脑复苏中应用的方法、范围、预测神经功能转归、不良反应等方面进行综述,旨在为临床医务人员使用TTM提供参考。

Brain damage is an important cause of death in patients with Restoration of Spontaneous Circulation. Target Temperature Management (TTM) can reduce brain damage which caused by post-cardiac arrest syndrome because of reducing brain metabolism and systemic ischemia/reperfusion response in patients. However, there are still some controversies about the optimum methods and application scope of TTM in cerebral resuscitation. Predictive markers for the outcome of neurological function in patients are still being identified and verified. In this paper, we review the application of TTM in brain resuscitation after cardiac arrest in adult patients in recent years in order to provide references for clinician to use TTM.

1
Koltowski L, Malesa K, Tomaniak M, et al. Implementation of mild therapeutic hypothermia for post-resuscitation care of sudden cardiac arrest survivors in cardiology units in Poland [J]. Adv Clin Exp Med, 2017, 26(8): 1207-1212.
2
马莉, 杜兰芳, 马青变, 等. 北京市护理人员对心脏骤停患者目标体温管理的现状调查 [J]. 中华护理杂志, 2019, 54(9): 1373-1378.
3
Nolan JP, Soar J, Cariou A, et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines for Post-resuscitation Care 2015 [J]. Resuscitation, 2015, 95: 202-222.
4
Callaway CW, Donnino MW, Fink EL, et al. Part 8: Post-Cardiac Arrest Care: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care [J]. Circulation, 2015, 132(18 Suppl 2): S465-482.
5
Lopez-de-Sa E, Juarez M, Armada E, et al. A multicentre randomized pilot trial on the effectiveness of different levels of cooling in comatose survivors of out-of-hospital cardiac arrest: the FROST-I trial [J]. Intensive Care Med, 2018, 44(11): 1807-1815.
6
Lee DH, Lee SH, Oh JH, et al. Optic nerve sheath diameter measured using early unenhanced brain computed tomography shows no correlation with neurological outcomes in patients undergoing targeted temperature management after cardiac arrest [J]. Resuscitation, 2018, 128: 144-150.
7
Bray JE, Stub D, Bloom JE, et al. Changing target temperature from 33 ℃ to 36 ℃ in the ICU management of out-of-hospital cardiac arrest: A before and after study [J]. Resuscitation, 2017, 113: 39-43.
8
Kirkegaard H, Soreide E, de Haas I, et al. Targeted Temperature Management for 48 vs 24 Hours and Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial [J]. JAMA. 2017, 318(4): 341-350.
9
Deye N, Cariou A, Girardie P, et al. Endovascular Versus External Targeted Temperature Management for Patients With Out-of-Hospital Cardiac Arrest: A Randomized, Controlled Study [J]. Circulation, 2015, 132(3): 182-193.
10
Oh SH, Oh JS, Kim YM, et al. An observational study of surface versus endovascular cooling techniques in cardiac arrest patients: a propensity-matched analysis [J]. Crit Care, 2015, 19: 85.
11
Kim KH, Shin SD, Song KJ, et al. Cooling methods of targeted temperature management and neurological recovery after out-of-hospital cardiac arrest: A nationwide multicenter multi-level analysis [J]. Resuscitation, 2018, 125: 56-65.
12
Sonder P, Janssens GN, Beishuizen A, et al. Efficacy of different cooling technologies for therapeutic temperature management: A prospective intervention study [J]. Resuscitation, 2018, 124: 14-20.
13
Paul M, Bougouin W, Geri G, et al. Delayed awakening after cardiac arrest: prevalence and risk factors in the Parisian registry [J]. Intensive Care Med, 2016, 42(7): 1128-1136.
14
Fugate JE, Wijdicks EFM, White RD, et al. Does therapeutic hypothermia affect time to awakening in cardiac arrest survivors? [J]. Neurology, 2011, 77(14): 1346-1350.
15
Zanyk-McLean K, Sawyer KN, Paternoster R, et al. Time to Awakening Is Often Delayed in Patients Who Receive Targeted Temperature Management After Cardiac Arrest [J]. Ther Hypothermia Tem, 2017, 7(2): 95-100.
16
Jung E, Lee SY, Park JH, et al. Interaction Effects Between Targeted Temperature Management and Hypertension on Survival Outcomes After Out-of-Hospital Cardiac Arrest: A National Observational Study from 2009 to 2016 [J]. Ther Hypothermia Tem, 2019. [Epub ahead of print]
17
Cragun BN, Hite Philp F, O'Neill J, et al. Therapeutic Hypothermia and Targeted Temperature Management for Traumatic Arrest and Surgical Patients [J]. Ther Hypothermia Temp Manag, 2019, 9(2): 156-158.
18
Park JS, You Y, Min JH, et al. Study on the timing of severe blood-brain barrier disruption using cerebrospinal fluid-serum albumin quotient in post cardiac arrest patients treated with targeted temperature management [J]. Resuscitation, 2019, 135: 118-123.
19
Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia [J]. Crit Care Med, 2009, 37(7 Suppl): S186-202.
20
Kim MW, Park JH, Ro YS, et al. End stage renal disease modifies the effect of targeted temperature management after out-of-hospital cardiac arrest [J]. Am J Emerg Med, 2019. [Epub ahead of print]
21
Mazumder MK, Giri A, Kumar S, et al. A highly reproducible mice model of chronic kidney disease: Evidences of behavioural abnormalities and blood-brain barrier disruption [J]. Life Sci, 2016, 161: 27-36.
22
Sandroni C, D'Arrigo S, Nolan JP. Prognostication after cardiac arrest [J]. Crit Care, 2018, 22(1): 150.
23
Riker RR, Sawyer ME, Fischman VG, et al. Neurological Pupil Index and Pupillary Light Reflex by Pupillometry Predict Outcome Early After Cardiac Arrest [J]. Neurocrit Care, 2019. [Epub ahead of print]
24
Solari D, Rossetti AO, Carteron L, et al. Early prediction of coma recovery after cardiac arrest with blinded pupillometry [J]. Ann Neurol, 2017, 81(6): 804-810.
25
Rosen C, Rosen H, Andreasson U, et al. Cerebrospinal fluid biomarkers in cardiac arrest survivors [J]. Resuscitation, 2014, 85(2): 227-232.
26
Mattsson N, Zetterberg H, Nielsen N, et al. Serum tau and neurological outcome in cardiac arrest [J]. Ann Neurol, 2017, 82(5): 665-675.
27
Grand J, Kjaergaard J, Nielsen N, et al. Serum tau fragments as predictors of death or poor neurological outcome after out-of-hospital cardiac arrest [J]. Biomarkers, 2019, 24(6): 584-591.
28
Gonzalez-Pacheco H, Amezcua-Guerra LM, Sandoval J, et al. Prognostic Implications of Serum Albumin Levels in Patients With Acute Coronary Syndromes [J]. Am J Cardiol, 2017, 119(7): 951-958.
29
Matsuyama T, Iwami T, Yamada T, et al. Prognostic Impact of Serum Albumin Concentration for Neurologically Favorable Outcome in Patients Treated with Targeted Temperature Management After Out-of-Hospital Cardiac Arrest: A Multicenter Prospective Study [J]. Ther Hypothermia Temp Manag, 2018, 8(3): 165-172.
30
Chang JJ, Mack WJ, Saver JL, et al. Magnesium: potential roles in neurovascular disease [J]. Front Neurol, 2014, 5: 52.
31
Perucki WH, Hiendlmayr B, O'Sullivan DM, et al. Magnesium Levels and Neurologic Outcomes in Patients Undergoing Therapeutic Hypothermia After Cardiac Arrest [J]. Ther Hypothermia Temp Manag, 2018, 8(1): 14-17.
32
Jung YS, Kwon WY, Suh GJ, et al. Low serum Kallistatin level was associated with poor neurological outcome of out-of-hospital cardiac arrest survivors: Proteomics study [J]. Resuscitation, 2018, 128: 6-10.
33
Wihersaari L, Tiainen M, Skrifvars MB, et al. Usefulness of neuron specific enolase in prognostication after cardiac arrest: Impact of age and time to ROSC [J]. Resuscitation, 2019, 139: 214-221.
34
Stammet P, Collignon O, Hassager C, et al. Neuron-Specific Enolase as a Predictor of Death or Poor Neurological Outcome After Out-of-Hospital Cardiac Arrest and Targeted Temperature Management at 33 degrees C and 36 degrees C (vol 65, pg 2104, 2015) [J]. J Am Coll Cardiol, 2017, 69(16): 2104-2104.
35
You Y, Park JS, Min J, et al. The usefulness of neuron-specific enolase in cerebrospinal fluid to predict neurological prognosis in cardiac arrest survivors who underwent target temperature management: A prospective observational study [J]. Resuscitation, 2019, 145: 185-191.
36
Hong JY, Lee DH, Oh JH, et al. Grey-white matter ratio measured using early unenhanced brain computed tomography shows no correlation with neurological outcomes in patients undergoing targeted temperature management after cardiac arrest [J]. Resuscitation, 2019, 140: 161-169.
37
Moseby-Knappe M, Pellis T, Dragancea I, et al. Head computed tomography for prognostication of poor outcome in comatose patients after cardiac arrest and targeted temperature management [J]. Resuscitation, 2017, 119: 89-94.
38
Liu H, Xu P, He F, et al. Neurological prognostic value of gray-white-matter ratio in patients after respiratory and cardiac arrest [J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2017, 29(10): 893-896.
39
Na MK, Kim W, Lim TH, et al. Gray matter to white matter ratio for predicting neurological outcomes in patients treated with target temperature management after cardiac arrest: A systematic review and meta-analysis [J]. Resuscitation, 2018, 132: 21-28.
40
Jeon CH, Park JS, Lee JH, et al. Comparison of brain computed tomography and diffusion-weighted magnetic resonance imaging to predict early neurologic outcome before target temperature management comatose cardiac arrest survivors [J]. Resuscitation, 2017, 118: 21-26.
41
Sekhon MS, McBeth P, Zou J, et al. Association Between Optic Nerve Sheath Diameter and Mortality in Patients with Severe Traumatic Brain Injury [J]. Neurocritical Care, 2014, 21(2): 245-252.
42
Lee HC, Lee WJ, Dho YS, et al. Optic nerve sheath diameter based on preoperative brain computed tomography and intracranial pressure are positively correlated in adults with hydrocephalus [J]. Clin Neurol Neurosur, 2018, 167: 31-35.
43
Wallin E, Larsson IM, Nordmark-Grass J, et al. Characteristics of jugular bulb oxygen saturation in patients after cardiac arrest: A prospective study [J]. Acta Anaesthesiol Scand, 2018, 62(9): 1237-1245.
44
Saritas A, Cinleti BA, Zincircioglu C, et al. Effect of regional cerebral oximetry to estimate neurologic prognostic outcomes in patients administered targeted temperature management [J]. Am J Emerg Med, 2018, 36(12): 2236-2241.
45
Bougle A, Daviaud F, Bougouin W, et al. Determinants and significance of cerebral oximetry after cardiac arrest: A prospective cohort study [J]. Resuscitation, 2016, 99: 1-6.
46
Jakkula P, Hastbacka J, Reinikainen M, et al. Near-infrared spectroscopy after out-of-hospital cardiac arrest [J]. Crit Care, 2019, 23(1): 171.
47
Eilam A, Samogalskyi V, Bregman G, et al. Occurrence of overt seizures in comatose survivor patients treated with targeted temperature [J]. Brain Behav, 2017, 7(11): e00842.
[1] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[2] 楼亨通, 陆远强. 非外伤性院外心脏骤停患者预后危险因素分析及列线图模型的构建[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 177-186.
[3] 李文琳, 羊玲, 邢凯慧, 陈彩华, 钟丽花, 张娅琴, 张薇. 脐动脉血血气分析联合振幅整合脑电图对新生儿窒息脑损伤的早期诊断价值分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 550-558.
[4] 钱晓英, 吴新, 徐婷婷. 颅脑损伤并发呼吸衰竭患者早期机械通气的效果分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 526-528.
[5] 刘玲, 肖颖, 王蓉. 严重创伤并发肺部感染死亡病例分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 581-583.
[6] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[7] 李飞翔, 段虎斌, 李晋虎, 吴昊, 王永红, 范益民. 急性颅脑损伤继发下肢静脉血栓的相关危险因素分析及预测模型构建[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 277-282.
[8] 潘立, 谢理政, 程宏伟, 茆翔. 创伤性颅脑损伤后垂体功能减退[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 308-312.
[9] 王景景, 符锋, 李建伟, 任党利, 陈翀, 刘慧, 孙洪涛, 涂悦. 针刺对中型创伤性颅脑损伤后BDNF/TrkB信号通路的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 199-205.
[10] 张馨月, 韩帅, 张舒石, 李文臣, 张舒岩. 颅内压监测技术在创伤性颅脑损伤治疗中的应用[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 246-252.
[11] 张永明. 颈段脊髓电刺激治疗颅脑损伤后慢性意识障碍的进展[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 129-134.
[12] 胡霁云, 谢树才, 张丽娜. S100钙结合蛋白B与重症神经研究进展[J]. 中华重症医学电子杂志, 2023, 09(03): 298-303.
[13] 运陌, 李茂芳, 王浩, 刘东远. 微创穿刺引流联合吡拉西坦、乌拉地尔治疗基底节区高血压性脑出血的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 278-285.
[14] 丁晶, 李培雯, 许迎春. 醒脑开窍针刺法在神经急重症中的应用[J]. 中华针灸电子杂志, 2023, 12(04): 161-164.
[15] 张宇, 蔡玉洁, 林日清, 邱钦杰, 崔理立, 郑东, 周海红. 张力蛋白1对放射性脑损伤小鼠认知功能的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 244-253.
阅读次数
全文


摘要