切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2020, Vol. 14 ›› Issue (02) : 70 -75. doi: 10.11817/j.issn.1673-9248.2020.02.002

所属专题: 专家论坛 文献

专家论坛

目标体温管理在成人心脏骤停后脑复苏中应用的研究进展
李晓丹1, 马青变1,()   
  1. 1. 100191 北京大学第三医院急诊科
  • 收稿日期:2020-02-24 出版日期:2020-04-01
  • 通信作者: 马青变

Advances in the application of target temperature management in brain resuscitation after adult cardiac arrest

Xiaodan Li1, Qingbian Ma1,()   

  1. 1. Department of Emergency Medicine, Peking University Third Hospital, Beijing 100191, China
  • Received:2020-02-24 Published:2020-04-01
  • Corresponding author: Qingbian Ma
  • About author:
    Corresponding author: Ma Qingbian, Email:
引用本文:

李晓丹, 马青变. 目标体温管理在成人心脏骤停后脑复苏中应用的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2020, 14(02): 70-75.

Xiaodan Li, Qingbian Ma. Advances in the application of target temperature management in brain resuscitation after adult cardiac arrest[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2020, 14(02): 70-75.

脑损伤是心脏骤停自主循环恢复后患者死亡的重要原因。目标体温管理(TTM)可以通过降低患者脑代谢和减轻全身缺血/再灌注反应而减少由心脏停搏后综合征引起的脑损伤,被国际复苏指南推荐为心脏骤停后的脑复苏治疗。但是,关于TTM在脑复苏中的最佳使用方法和应用范围仍存在一定争议,而用于预测患者神经功能转归的标志物也在不断地被发现和验证。本文对近年来TTM在成人心脏骤停后脑复苏中应用的方法、范围、预测神经功能转归、不良反应等方面进行综述,旨在为临床医务人员使用TTM提供参考。

Brain damage is an important cause of death in patients with Restoration of Spontaneous Circulation. Target Temperature Management (TTM) can reduce brain damage which caused by post-cardiac arrest syndrome because of reducing brain metabolism and systemic ischemia/reperfusion response in patients. However, there are still some controversies about the optimum methods and application scope of TTM in cerebral resuscitation. Predictive markers for the outcome of neurological function in patients are still being identified and verified. In this paper, we review the application of TTM in brain resuscitation after cardiac arrest in adult patients in recent years in order to provide references for clinician to use TTM.

1
Koltowski L, Malesa K, Tomaniak M, et al. Implementation of mild therapeutic hypothermia for post-resuscitation care of sudden cardiac arrest survivors in cardiology units in Poland [J]. Adv Clin Exp Med, 2017, 26(8): 1207-1212.
2
马莉, 杜兰芳, 马青变, 等. 北京市护理人员对心脏骤停患者目标体温管理的现状调查 [J]. 中华护理杂志, 2019, 54(9): 1373-1378.
3
Nolan JP, Soar J, Cariou A, et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines for Post-resuscitation Care 2015 [J]. Resuscitation, 2015, 95: 202-222.
4
Callaway CW, Donnino MW, Fink EL, et al. Part 8: Post-Cardiac Arrest Care: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care [J]. Circulation, 2015, 132(18 Suppl 2): S465-482.
5
Lopez-de-Sa E, Juarez M, Armada E, et al. A multicentre randomized pilot trial on the effectiveness of different levels of cooling in comatose survivors of out-of-hospital cardiac arrest: the FROST-I trial [J]. Intensive Care Med, 2018, 44(11): 1807-1815.
6
Lee DH, Lee SH, Oh JH, et al. Optic nerve sheath diameter measured using early unenhanced brain computed tomography shows no correlation with neurological outcomes in patients undergoing targeted temperature management after cardiac arrest [J]. Resuscitation, 2018, 128: 144-150.
7
Bray JE, Stub D, Bloom JE, et al. Changing target temperature from 33 ℃ to 36 ℃ in the ICU management of out-of-hospital cardiac arrest: A before and after study [J]. Resuscitation, 2017, 113: 39-43.
8
Kirkegaard H, Soreide E, de Haas I, et al. Targeted Temperature Management for 48 vs 24 Hours and Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial [J]. JAMA. 2017, 318(4): 341-350.
9
Deye N, Cariou A, Girardie P, et al. Endovascular Versus External Targeted Temperature Management for Patients With Out-of-Hospital Cardiac Arrest: A Randomized, Controlled Study [J]. Circulation, 2015, 132(3): 182-193.
10
Oh SH, Oh JS, Kim YM, et al. An observational study of surface versus endovascular cooling techniques in cardiac arrest patients: a propensity-matched analysis [J]. Crit Care, 2015, 19: 85.
11
Kim KH, Shin SD, Song KJ, et al. Cooling methods of targeted temperature management and neurological recovery after out-of-hospital cardiac arrest: A nationwide multicenter multi-level analysis [J]. Resuscitation, 2018, 125: 56-65.
12
Sonder P, Janssens GN, Beishuizen A, et al. Efficacy of different cooling technologies for therapeutic temperature management: A prospective intervention study [J]. Resuscitation, 2018, 124: 14-20.
13
Paul M, Bougouin W, Geri G, et al. Delayed awakening after cardiac arrest: prevalence and risk factors in the Parisian registry [J]. Intensive Care Med, 2016, 42(7): 1128-1136.
14
Fugate JE, Wijdicks EFM, White RD, et al. Does therapeutic hypothermia affect time to awakening in cardiac arrest survivors? [J]. Neurology, 2011, 77(14): 1346-1350.
15
Zanyk-McLean K, Sawyer KN, Paternoster R, et al. Time to Awakening Is Often Delayed in Patients Who Receive Targeted Temperature Management After Cardiac Arrest [J]. Ther Hypothermia Tem, 2017, 7(2): 95-100.
16
Jung E, Lee SY, Park JH, et al. Interaction Effects Between Targeted Temperature Management and Hypertension on Survival Outcomes After Out-of-Hospital Cardiac Arrest: A National Observational Study from 2009 to 2016 [J]. Ther Hypothermia Tem, 2019. [Epub ahead of print]
17
Cragun BN, Hite Philp F, O'Neill J, et al. Therapeutic Hypothermia and Targeted Temperature Management for Traumatic Arrest and Surgical Patients [J]. Ther Hypothermia Temp Manag, 2019, 9(2): 156-158.
18
Park JS, You Y, Min JH, et al. Study on the timing of severe blood-brain barrier disruption using cerebrospinal fluid-serum albumin quotient in post cardiac arrest patients treated with targeted temperature management [J]. Resuscitation, 2019, 135: 118-123.
19
Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia [J]. Crit Care Med, 2009, 37(7 Suppl): S186-202.
20
Kim MW, Park JH, Ro YS, et al. End stage renal disease modifies the effect of targeted temperature management after out-of-hospital cardiac arrest [J]. Am J Emerg Med, 2019. [Epub ahead of print]
21
Mazumder MK, Giri A, Kumar S, et al. A highly reproducible mice model of chronic kidney disease: Evidences of behavioural abnormalities and blood-brain barrier disruption [J]. Life Sci, 2016, 161: 27-36.
22
Sandroni C, D'Arrigo S, Nolan JP. Prognostication after cardiac arrest [J]. Crit Care, 2018, 22(1): 150.
23
Riker RR, Sawyer ME, Fischman VG, et al. Neurological Pupil Index and Pupillary Light Reflex by Pupillometry Predict Outcome Early After Cardiac Arrest [J]. Neurocrit Care, 2019. [Epub ahead of print]
24
Solari D, Rossetti AO, Carteron L, et al. Early prediction of coma recovery after cardiac arrest with blinded pupillometry [J]. Ann Neurol, 2017, 81(6): 804-810.
25
Rosen C, Rosen H, Andreasson U, et al. Cerebrospinal fluid biomarkers in cardiac arrest survivors [J]. Resuscitation, 2014, 85(2): 227-232.
26
Mattsson N, Zetterberg H, Nielsen N, et al. Serum tau and neurological outcome in cardiac arrest [J]. Ann Neurol, 2017, 82(5): 665-675.
27
Grand J, Kjaergaard J, Nielsen N, et al. Serum tau fragments as predictors of death or poor neurological outcome after out-of-hospital cardiac arrest [J]. Biomarkers, 2019, 24(6): 584-591.
28
Gonzalez-Pacheco H, Amezcua-Guerra LM, Sandoval J, et al. Prognostic Implications of Serum Albumin Levels in Patients With Acute Coronary Syndromes [J]. Am J Cardiol, 2017, 119(7): 951-958.
29
Matsuyama T, Iwami T, Yamada T, et al. Prognostic Impact of Serum Albumin Concentration for Neurologically Favorable Outcome in Patients Treated with Targeted Temperature Management After Out-of-Hospital Cardiac Arrest: A Multicenter Prospective Study [J]. Ther Hypothermia Temp Manag, 2018, 8(3): 165-172.
30
Chang JJ, Mack WJ, Saver JL, et al. Magnesium: potential roles in neurovascular disease [J]. Front Neurol, 2014, 5: 52.
31
Perucki WH, Hiendlmayr B, O'Sullivan DM, et al. Magnesium Levels and Neurologic Outcomes in Patients Undergoing Therapeutic Hypothermia After Cardiac Arrest [J]. Ther Hypothermia Temp Manag, 2018, 8(1): 14-17.
32
Jung YS, Kwon WY, Suh GJ, et al. Low serum Kallistatin level was associated with poor neurological outcome of out-of-hospital cardiac arrest survivors: Proteomics study [J]. Resuscitation, 2018, 128: 6-10.
33
Wihersaari L, Tiainen M, Skrifvars MB, et al. Usefulness of neuron specific enolase in prognostication after cardiac arrest: Impact of age and time to ROSC [J]. Resuscitation, 2019, 139: 214-221.
34
Stammet P, Collignon O, Hassager C, et al. Neuron-Specific Enolase as a Predictor of Death or Poor Neurological Outcome After Out-of-Hospital Cardiac Arrest and Targeted Temperature Management at 33 degrees C and 36 degrees C (vol 65, pg 2104, 2015) [J]. J Am Coll Cardiol, 2017, 69(16): 2104-2104.
35
You Y, Park JS, Min J, et al. The usefulness of neuron-specific enolase in cerebrospinal fluid to predict neurological prognosis in cardiac arrest survivors who underwent target temperature management: A prospective observational study [J]. Resuscitation, 2019, 145: 185-191.
36
Hong JY, Lee DH, Oh JH, et al. Grey-white matter ratio measured using early unenhanced brain computed tomography shows no correlation with neurological outcomes in patients undergoing targeted temperature management after cardiac arrest [J]. Resuscitation, 2019, 140: 161-169.
37
Moseby-Knappe M, Pellis T, Dragancea I, et al. Head computed tomography for prognostication of poor outcome in comatose patients after cardiac arrest and targeted temperature management [J]. Resuscitation, 2017, 119: 89-94.
38
Liu H, Xu P, He F, et al. Neurological prognostic value of gray-white-matter ratio in patients after respiratory and cardiac arrest [J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2017, 29(10): 893-896.
39
Na MK, Kim W, Lim TH, et al. Gray matter to white matter ratio for predicting neurological outcomes in patients treated with target temperature management after cardiac arrest: A systematic review and meta-analysis [J]. Resuscitation, 2018, 132: 21-28.
40
Jeon CH, Park JS, Lee JH, et al. Comparison of brain computed tomography and diffusion-weighted magnetic resonance imaging to predict early neurologic outcome before target temperature management comatose cardiac arrest survivors [J]. Resuscitation, 2017, 118: 21-26.
41
Sekhon MS, McBeth P, Zou J, et al. Association Between Optic Nerve Sheath Diameter and Mortality in Patients with Severe Traumatic Brain Injury [J]. Neurocritical Care, 2014, 21(2): 245-252.
42
Lee HC, Lee WJ, Dho YS, et al. Optic nerve sheath diameter based on preoperative brain computed tomography and intracranial pressure are positively correlated in adults with hydrocephalus [J]. Clin Neurol Neurosur, 2018, 167: 31-35.
43
Wallin E, Larsson IM, Nordmark-Grass J, et al. Characteristics of jugular bulb oxygen saturation in patients after cardiac arrest: A prospective study [J]. Acta Anaesthesiol Scand, 2018, 62(9): 1237-1245.
44
Saritas A, Cinleti BA, Zincircioglu C, et al. Effect of regional cerebral oximetry to estimate neurologic prognostic outcomes in patients administered targeted temperature management [J]. Am J Emerg Med, 2018, 36(12): 2236-2241.
45
Bougle A, Daviaud F, Bougouin W, et al. Determinants and significance of cerebral oximetry after cardiac arrest: A prospective cohort study [J]. Resuscitation, 2016, 99: 1-6.
46
Jakkula P, Hastbacka J, Reinikainen M, et al. Near-infrared spectroscopy after out-of-hospital cardiac arrest [J]. Crit Care, 2019, 23(1): 171.
47
Eilam A, Samogalskyi V, Bregman G, et al. Occurrence of overt seizures in comatose survivor patients treated with targeted temperature [J]. Brain Behav, 2017, 7(11): e00842.
[1] 王颖, 吴德平, 刘煜, 刘国栋. miR-9-5p下调CXCR4减轻创伤性脑损伤大鼠的神经炎症和细胞凋亡[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 65-72.
[2] 王守森, 傅世龙, 鲜亮, 林珑. 深入理解控制性减压技术对创伤性颅脑损伤术中脑膨出的预防机制与效果[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 257-262.
[3] 吴东阳, 林向丹, 石佐林, 赵玉龙, 王振, 文安国, 纪鑫, 李俊之, 赵明光. NF-L、NLRP3、S100B 蛋白在颅脑损伤严重程度及预后评估中的应用价值[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 279-285.
[4] 罗磊, 熊建平, 郑宏伟, 王嗣嵩, 柴祥, 吴青, 潘海鹏. 静脉留置针穿刺引流治疗颅骨修补术后硬膜外积液一例报道[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 315-317.
[5] 张晟豪, 周杰, 姚鹏飞, 李长栋, 屈晓东, 南亚强, 曹丽. 雷公藤红素在创伤性脑损伤后继发性损伤中的作用及机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 132-140.
[6] 从长春, 王春琳, 武孝刚, 王金标, 章福彬, 孙磊, 王李. 重型颅脑损伤患者呼吸机相关性肺炎的危险因素及病原学分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 151-157.
[7] 毛进鹏, 陶治鹤, 刘琦, 王勇, 周明安, 陈劲松, 田少斌. 保守治疗大量创伤性硬膜外血肿的体会(附10例报告)[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 164-168.
[8] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[9] 王如海, 王绅, 张敏, 李春, 韩超, 于强, 胡海成, 李习珍. 重型创伤性脑损伤患者去骨瓣减压术后短期死亡风险的影响因素分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 285-291.
[10] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[11] 胡志恒, 任洪波, 宋志远, 张运刚, 韩晓正. 血清sTIM-3及其配体Gal-9、CEACAM-1与创伤性颅脑损伤患者脑损伤程度及预后的关系[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 201-207.
[12] 王燕, 梁海乾, 郭姗姗. 炎症小体在创伤性脑损伤中作用的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 177-181.
[13] 唐成鑫, 亢文超, 孙玉芳, 项涛, 马林. 成都市院前急救中心院外心脏骤停的调度流程及改进措施分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 745-750.
[14] 郭子宾, 柯学锋, 余琳潇, 张伟艺, 张军, 汪娟. 2015年至2019年盐田区院外心脏骤停患者救治成功的影响因素分析和应对策略[J/OL]. 中华卫生应急电子杂志, 2024, 10(04): 199-202.
[15] 刘晴雯, 韩勇, 陈丽丹, 邓哲. 早期机械通气对成人院内心脏骤停病死率的影响:一项回顾性队列研究[J/OL]. 中华卫生应急电子杂志, 2024, 10(04): 203-206.
阅读次数
全文


摘要