切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2020, Vol. 14 ›› Issue (06) : 363 -365. doi: 10.11817/j.issn.1673-9248.2020.06.009

所属专题: 专家论坛 文献

综述

脑微梗死与认知障碍相关性的研究进展
夏禹1,()   
  1. 1. 230022 合肥,安徽医科大学第一附属医院神经内科
  • 收稿日期:2020-07-31 出版日期:2020-12-01
  • 通信作者: 夏禹

Advances of correlation between cerebral microinfarction and cognitive impairment

Yu Xia1,()   

  1. 1. Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
  • Received:2020-07-31 Published:2020-12-01
  • Corresponding author: Yu Xia
  • About author:
    Corresponding author: Xia Yu, Email:
引用本文:

夏禹. 脑微梗死与认知障碍相关性的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2020, 14(06): 363-365.

Yu Xia. Advances of correlation between cerebral microinfarction and cognitive impairment[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2020, 14(06): 363-365.

脑微梗死(CMI)是一种好发于老年人群的脑血管疾病,与老年人群认知功能减退和痴呆密切相关。由于其尺寸较小,在低分辨率磁共振成像(MRI)中只能看到病变的一部分,因此在常规临床MRI扫描的基础上研究具有一定的局限性,而使用高磁场强度的MRI扫描仪可以描绘出CMI,尤其是皮质CMI。因此,本文主要对CMI与认知功能障碍相关性的发病机制、影像学表现以及治疗等方面进展进行综述,以更好地认识CMI与认知障碍的关系。

Cerebral microinfarction (CMI) is a cerebrovascular disease that occurs in the elderly, and it is closely related to cognitive decline and dementia in the elderly. Due to their small size, only a part of these lesions can be recognized in low-resolution magnetic resonance imaging (MRI). Therefore, there are certain limitations in studying them on routine clinical MRI scans. While MRI scans with high magnetic field strength are applied, CMI can be identified, especially cortical CMI. This article mainly reviews the pathogenesis, imaging findings and treatment of the cerebral microinfarction and cognitive impairment, in order to better understand the relationship between CMI and cognitive impairment.

1
Shih AY, Hyacinth HI, Hartmann DA, et al. Rodent models of cerebral microinfarct and microhemorrhage [J]. Stroke, 2018, 49(3): 803-810.
2
Auriel E, Westover MB, Bianchi MT, et al. Estimating total cerebral microinfarct burden from diffusion-weighted imaging [J]. Stroke, 2015, 46(8): 2129-2135.
3
Arvanitakis Z, Leurgans SE, Barnes LL, et al. Microinfarct pathology, dementia, and cognitive systems [J]. Stroke, 2011, 42(3): 722-727.

URL    
4
Sonnen JA, Santa CK, Hemmy LS, et al. Ecology of the aging human brain [J]. Arch Neurol, 2011, 68(8): 1049-1056.

URL    
5
Brundel M, Bresser JD, van Dillen JJ, et al. Cerebral microinfarcts: a systematic review of neuropathological studies [J]. J Cereb Blood Flow Metab, 2012, 32(3): 425-436.
6
Reuck JD, Auger F, Durieux N, et al. Frequency and topography of small cerebrovascular lesions in vascular and in mixed dementia: a post-mortem 7-tesla magnetic resonance imaging study with neuropathological correlates [J]. Folia Neuropathol, 2017, 55(1): 31-37.
7
Zhang L, Biessels GJ, Hilal S, et al. Cerebral microinfarcts affect brain structural network topology in cognitively impaired patients [J]. J Cereb Blood Flow Metab, 2020, 271678X20902187.
8
Ferro DA, Brink HVD, Exalto LG, et al. Clinical relevance of acute cerebral microinfarcts in vascular cognitive impairment [J]. Neurology, 2019, 92(14): e1558-e1566.
9
Vinters HV, Ellis WG, Zarow C, et al. Neuropathologic substrates of ischemic vascular dementia [J]. J Neuropathol Exp Neurol, 2000, 59(11): 931-945.
10
Kalaria RN, Perry RH, O'Brien J, et al. Atheromatous disease in small intracerebral vessels, microinfarcts and dementia [J]. Neuropathol Appl Neurobiol, 2012, 38(5): 505-508.
11
Wang ZL, van Veluw SJ, Wong A, et al. Risk factors and cognitive relevance of cortical cerebral microinfarcts in patients with ischemic stroke or transient ischemic attack [J]. Stroke, 2016, 47(10): 2450-2455.
12
Morris AW, Sharp MM, Albargothy NJ, et al. Vascular basement membranes as pathways for the passage of fluid into and out of the brain [J]. Acta neuropathol, 2016, 131(5): 725-736.
13
Hawkes CA, Michalski D, Anders R, et al. Stroke-induced opposite and age-dependent changes of vessel-associated markers in co-morbid transgenic mice with Alzheimer-like alterations [J]. Exp Neurol, 2013, 250: 270-281.

URL    
14
Thomas T, Miners S, Love S. Post-mortem assessment of hypoperfusion of cerebral cortex in Alzheimer's disease and vascular dementia [J]. Brain, 2015, 138(Pt 4): 1059-1069.
15
Raman MR, Preboske GM, Przybelski SA, et al. Antemortem MRI findings associated with microinfarcts at autopsy [J]. Neurology, 2014, 82(22): 1951-1958.

URL    
16
Ferro DA, Mutsaerts HJ, Hilal S, et al. Cortical microinfarcts in memory clinic patients are associated with reduced cerebral perfusion [J]. J Cereb Blood Flow Metab, 2019, 271678X19877403.
17
Gurol ME, Viswanathan A, Gidicsin C, et al. Cerebral amyloid angiopathy burden associated with leukoaraiosis: a positron emission tomography/magnetic resonance imaging study [J]. Annals of neurology, 2013, 73(4): 529-536.

URL    
18
Erten-Lyons D, Woltjer R, Kaye J, et al. Neuropathologic basis of white matter hyperintensity accumulation with advanced age [J]. Neurology, 2013, 81(11): 977-983.

URL    
19
Wang M, Ding F, Deng S, et al. Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts [J]. J Neurosci, 2017, 37(11): 2870-2877.
20
Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels [J]. Nature, 2015, 523(7560): 337-341.
21
Goldstein ED, Badi MK, Hasan TF,et al. Cerebral small vessel disease burden and all-cause mortality: mayo clinic florida familial cerebrovascular diseases registry [J]. J Stroke Cerebrovasc Dis, 2019, 28(12): 104285.
22
Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration [J]. Lancet Neurol, 2013, 12(8): 822-838.

URL    
23
Dieleman N, Van der Kolk AG, Zwanenburg JJM, et al. Relations between location and type of intracranial atherosclerosis and parenchymal damage [J]. J Cereb Blood Flow Metab, 2016, 36(7): 1271-1280.
24
Van Dalen JW, Scuric EE, Van Veluw SJ, et al. Cortical microinfarcts detected in vivo on 3 Tesla MRI: clinical and radiological correlates [J]. Stroke, 2015, 46(1): 255-257.
25
Van Veluw SJ, Charidimou A, Van der Kouwe AJ, et al. Microbleed and microinfarct detection in amyloid angiopathy: a high-resolution MRI-histopathology study [J]. Brain, 2016, 139(Pt 12): 3151-3162.
26
Ferro DA, Mutsaerts HJ, Hilal S, et al. Cortical microinfarcts in memory clinic patients are associated with reduced cerebral perfusion [J]. J Cereb Blood Flow Metab, 2020, 40(9): 1869-1878.
[1] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[2] 曹琮沅, 黄烁金, 何倩婷, 王安训. 平阳霉素复合剂治疗口腔颌面部脉管畸形的有效性和安全性[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 368-374.
[3] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[4] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
[5] 许月芳, 刘旺, 曾妙甜, 郭宇姝. 多粘菌素B和多粘菌素E治疗外科多重耐药菌感染临床疗效及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 700-703.
[6] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[7] 刘柏隆, 周祥福. 压力性尿失禁阶梯治疗的项目介绍[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 125-125.
[8] 刘柏隆. 女性压力性尿失禁阶梯治疗之手术治疗方案选择[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 126-126.
[9] 石海波, 赵旭东, 王聪, 曲巍. 气肿性肾盂肾炎、气肿性膀胱炎并脓毒性休克一例报道并文献复习[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 644-647.
[10] 王秋生. 胆道良性疾病诊疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 779-782.
[11] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[12] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[13] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[14] 崔军威, 蔡华丽, 胡艺冰, 胡慧. 亚甲蓝联合金属定位夹及定位钩针标记在乳腺癌辅助化疗后评估腋窝转移淋巴结的临床应用价值探究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 625-632.
[15] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
阅读次数
全文


摘要