切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2020, Vol. 14 ›› Issue (06) : 363 -365. doi: 10.11817/j.issn.1673-9248.2020.06.009

所属专题: 专家论坛 文献

综述

脑微梗死与认知障碍相关性的研究进展
夏禹1,()   
  1. 1. 230022 合肥,安徽医科大学第一附属医院神经内科
  • 收稿日期:2020-07-31 出版日期:2020-12-01
  • 通信作者: 夏禹

Advances of correlation between cerebral microinfarction and cognitive impairment

Yu Xia1,()   

  1. 1. Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
  • Received:2020-07-31 Published:2020-12-01
  • Corresponding author: Yu Xia
  • About author:
    Corresponding author: Xia Yu, Email:
引用本文:

夏禹. 脑微梗死与认知障碍相关性的研究进展[J]. 中华脑血管病杂志(电子版), 2020, 14(06): 363-365.

Yu Xia. Advances of correlation between cerebral microinfarction and cognitive impairment[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2020, 14(06): 363-365.

脑微梗死(CMI)是一种好发于老年人群的脑血管疾病,与老年人群认知功能减退和痴呆密切相关。由于其尺寸较小,在低分辨率磁共振成像(MRI)中只能看到病变的一部分,因此在常规临床MRI扫描的基础上研究具有一定的局限性,而使用高磁场强度的MRI扫描仪可以描绘出CMI,尤其是皮质CMI。因此,本文主要对CMI与认知功能障碍相关性的发病机制、影像学表现以及治疗等方面进展进行综述,以更好地认识CMI与认知障碍的关系。

Cerebral microinfarction (CMI) is a cerebrovascular disease that occurs in the elderly, and it is closely related to cognitive decline and dementia in the elderly. Due to their small size, only a part of these lesions can be recognized in low-resolution magnetic resonance imaging (MRI). Therefore, there are certain limitations in studying them on routine clinical MRI scans. While MRI scans with high magnetic field strength are applied, CMI can be identified, especially cortical CMI. This article mainly reviews the pathogenesis, imaging findings and treatment of the cerebral microinfarction and cognitive impairment, in order to better understand the relationship between CMI and cognitive impairment.

1
Shih AY, Hyacinth HI, Hartmann DA, et al. Rodent models of cerebral microinfarct and microhemorrhage [J]. Stroke, 2018, 49(3): 803-810.
2
Auriel E, Westover MB, Bianchi MT, et al. Estimating total cerebral microinfarct burden from diffusion-weighted imaging [J]. Stroke, 2015, 46(8): 2129-2135.
3
Arvanitakis Z, Leurgans SE, Barnes LL, et al. Microinfarct pathology, dementia, and cognitive systems [J]. Stroke, 2011, 42(3): 722-727.

URL    
4
Sonnen JA, Santa CK, Hemmy LS, et al. Ecology of the aging human brain [J]. Arch Neurol, 2011, 68(8): 1049-1056.

URL    
5
Brundel M, Bresser JD, van Dillen JJ, et al. Cerebral microinfarcts: a systematic review of neuropathological studies [J]. J Cereb Blood Flow Metab, 2012, 32(3): 425-436.
6
Reuck JD, Auger F, Durieux N, et al. Frequency and topography of small cerebrovascular lesions in vascular and in mixed dementia: a post-mortem 7-tesla magnetic resonance imaging study with neuropathological correlates [J]. Folia Neuropathol, 2017, 55(1): 31-37.
7
Zhang L, Biessels GJ, Hilal S, et al. Cerebral microinfarcts affect brain structural network topology in cognitively impaired patients [J]. J Cereb Blood Flow Metab, 2020, 271678X20902187.
8
Ferro DA, Brink HVD, Exalto LG, et al. Clinical relevance of acute cerebral microinfarcts in vascular cognitive impairment [J]. Neurology, 2019, 92(14): e1558-e1566.
9
Vinters HV, Ellis WG, Zarow C, et al. Neuropathologic substrates of ischemic vascular dementia [J]. J Neuropathol Exp Neurol, 2000, 59(11): 931-945.
10
Kalaria RN, Perry RH, O'Brien J, et al. Atheromatous disease in small intracerebral vessels, microinfarcts and dementia [J]. Neuropathol Appl Neurobiol, 2012, 38(5): 505-508.
11
Wang ZL, van Veluw SJ, Wong A, et al. Risk factors and cognitive relevance of cortical cerebral microinfarcts in patients with ischemic stroke or transient ischemic attack [J]. Stroke, 2016, 47(10): 2450-2455.
12
Morris AW, Sharp MM, Albargothy NJ, et al. Vascular basement membranes as pathways for the passage of fluid into and out of the brain [J]. Acta neuropathol, 2016, 131(5): 725-736.
13
Hawkes CA, Michalski D, Anders R, et al. Stroke-induced opposite and age-dependent changes of vessel-associated markers in co-morbid transgenic mice with Alzheimer-like alterations [J]. Exp Neurol, 2013, 250: 270-281.

URL    
14
Thomas T, Miners S, Love S. Post-mortem assessment of hypoperfusion of cerebral cortex in Alzheimer's disease and vascular dementia [J]. Brain, 2015, 138(Pt 4): 1059-1069.
15
Raman MR, Preboske GM, Przybelski SA, et al. Antemortem MRI findings associated with microinfarcts at autopsy [J]. Neurology, 2014, 82(22): 1951-1958.

URL    
16
Ferro DA, Mutsaerts HJ, Hilal S, et al. Cortical microinfarcts in memory clinic patients are associated with reduced cerebral perfusion [J]. J Cereb Blood Flow Metab, 2019, 271678X19877403.
17
Gurol ME, Viswanathan A, Gidicsin C, et al. Cerebral amyloid angiopathy burden associated with leukoaraiosis: a positron emission tomography/magnetic resonance imaging study [J]. Annals of neurology, 2013, 73(4): 529-536.

URL    
18
Erten-Lyons D, Woltjer R, Kaye J, et al. Neuropathologic basis of white matter hyperintensity accumulation with advanced age [J]. Neurology, 2013, 81(11): 977-983.

URL    
19
Wang M, Ding F, Deng S, et al. Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts [J]. J Neurosci, 2017, 37(11): 2870-2877.
20
Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels [J]. Nature, 2015, 523(7560): 337-341.
21
Goldstein ED, Badi MK, Hasan TF,et al. Cerebral small vessel disease burden and all-cause mortality: mayo clinic florida familial cerebrovascular diseases registry [J]. J Stroke Cerebrovasc Dis, 2019, 28(12): 104285.
22
Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration [J]. Lancet Neurol, 2013, 12(8): 822-838.

URL    
23
Dieleman N, Van der Kolk AG, Zwanenburg JJM, et al. Relations between location and type of intracranial atherosclerosis and parenchymal damage [J]. J Cereb Blood Flow Metab, 2016, 36(7): 1271-1280.
24
Van Dalen JW, Scuric EE, Van Veluw SJ, et al. Cortical microinfarcts detected in vivo on 3 Tesla MRI: clinical and radiological correlates [J]. Stroke, 2015, 46(1): 255-257.
25
Van Veluw SJ, Charidimou A, Van der Kouwe AJ, et al. Microbleed and microinfarct detection in amyloid angiopathy: a high-resolution MRI-histopathology study [J]. Brain, 2016, 139(Pt 12): 3151-3162.
26
Ferro DA, Mutsaerts HJ, Hilal S, et al. Cortical microinfarcts in memory clinic patients are associated with reduced cerebral perfusion [J]. J Cereb Blood Flow Metab, 2020, 40(9): 1869-1878.
[1] 江泽莹, 王安婷, 王姣丽, 陈慈, 周秋玲, 黄燕娟, 周芳, 薛琰, 周剑烽, 谭文勇, 杜美芳. 多种植物油组分预防肿瘤放化疗相关毒性反应的效果分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 523-527.
[2] 朴广昊, 李屹洲, 刘瑞, 赵建民, 王凌峰. 皮肤撕脱伤撕脱皮瓣活力早期评估与修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 528-532.
[3] 张伟. 牙及牙槽外科:舒适治疗的先锋[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 386-388.
[4] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[5] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[6] 孔博, 张璟, 吕珂. 超声技术在复杂腹壁疝诊治中的作用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 670-673.
[7] 姜明, 罗锐, 龙成超. 闭孔疝的诊断与治疗:10年73例患者诊疗经验总结[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 706-710.
[8] 钟广俊, 刘春华, 朱万森, 徐晓雷, 王兆军. MRI联合不同扫描序列在胃癌术前分期诊断及化疗效果和预后的评估[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 378-382.
[9] 单秋洁, 孙立柱, 徐宜全, 王之霞, 徐妍, 马浩, 刘田田. 中老年食管癌患者调强放射治疗期间放射性肺损伤风险模型构建及应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 388-393.
[10] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[11] 顾国英, 黄迎春, 刘佳, 居建明, 于国锋, 蒋荣. 个体化肠外营养在肠切除伴肠功能障碍患者中的应用研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 489-493.
[12] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[13] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[14] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[15] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要