1 |
Wardlaw JM, Smith EE, Biessels GJ. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration [J]. Lancet Neurol, 2013, 12(8): 822-838.
URL
|
2 |
Choi KH, Kim HS, Park MS. et al. Overexpression of caveolin-1 attenuates brain edema by inhibiting tight junction degradation [J]. Oncotarget, 2016, 7(42): 67857-67867.
|
3 |
Traylor M, Tozer DJ, Croall ID. et al. Genetic variation in PLEKHG1 is associated with white matter hyperintensities (n=11,226) [J]. Neurology, 2019, 92(8): e749-e757.
|
4 |
Li M, Fu B, Dong W. et al. Correlations between plasma homocysteine and MTHFR gene polymorphism and white matter lesions [J]. Folia Neuropathol, 2018, 56(4): 301-307.
|
5 |
Hofer E, Cavalieri M, Bis JS, et al. White matter lesion progression: genome-wide search for genetic influences [J]. Stroke, 2015, 46(11): 3048-3057.
|
6 |
李静, 陈为安, 陈晓丽, 等. NOTCH3基因多态性与脑白质病变的关联研究 [J]. 中华急诊医学杂志, 2018, 27(9): 1030-1034.
|
7 |
石文磊, 韩红梅, 王国强, 等. 脑小血管病的遗传学研究进展 [J]. 中华神经医学杂志, 2017, 16(2): 204-208.
|
8 |
Luo X, Jiaerken Y, Yu X, et al. Associations between APOE genotype and cerebral small-vessel disease: a longitudinal study [J]. Oncotarget, 2017, 8(27): 44477-44489.
|
9 |
Paternoster L, Chen W, Sudlow CL, et al. Genetic determinants of white matter hyperintensities on brain scans: a systematic assessment of 19 candidate gene polymorphisms in 46 studies in 19,000 subjects [J]. Stroke, 2009, 40(6): 2020-2026.
|
10 |
韩建成, 高培毅, 林燕, 等. 缺血性脑卒中患者脑内微出血的磁共振成像研究 [J]. 中华老年心脑血管病杂志, 2008, 10(3): 181-184.
|
11 |
范刚峰, 张微微, 黄勇华, 等. 影响脑微出血严重程度的危险因素分析 [J]. 中国脑血管病杂志, 2013, 10(9): 472-476.
|
12 |
Maxwell SS, Jackson CA, Paternoster L, et al. Genetic associations with brain microbleeds: Systematic review and meta-analyses [J]. Neurology, 2011, 77(2): 158-167.
|
13 |
宋雨, 田淑芬. ApoE基因多态性与缺血性脑血管病患者脑微出血的相关性 [J]. 山东大学学报(医学版), 2019, 57(4): 47-51, 58.
|
14 |
Pola R, Flex A, Gaetani E, et al. Synergistic effect of -174 G/C polymorphism of the interleukin-6 gene promoter and 469 E/K polymorphism of the intercellular adhesion molecule-1 gene in Italian patients with history of ischemic stroke [J]. Stroke, 2003, 34(4): 881-885.
|
15 |
French CR, Seshadri S, Destefano AL, et al. Mutation of FOXC1 and PITX2 induces cerebral small-vessel disease [J]. J Clin Invest, 2014, 124(11): 4877-4881.
URL
|
16 |
Bodzioch M, Orso E, Klucken J, et al.The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease [J]. Nat Genet, 1999, 22(4): 347-351.
|
17 |
薛偕华, 黄赛娥, 吴加勇, 等. ABCA1基因V825I多态性与腔隙性脑梗死合并高血压病的相关性研究 [J]. 中西医结合心脑血管病杂志, 2012, 10(2): 163-165.
|
18 |
Saleheen D, Khanum S, Haider SR, et al. A novel haplotype in ABCA1 gene effects plasma HDL-C concentration [J]. Int J Cardiol, 2007, 115(1): 7-13.
|
19 |
邓可, 肖志杰, 赵水平, 等. ABCA1基因多态性与腔隙性脑梗死的关系 [J]. 卒中与神经疾病, 2008, 15(1): 27-30.
|
20 |
Sugimoto K, Ishibashi T, Sawamura T, et al. LOX-1-MT1-MMP axis is crucial for RhoA and Rac1 activation induced by oxidized low-density lipoprotein in endothelial cells [J]. Cardiovasc Res, 2009, 84(1): 127-136.
|
21 |
刘旭, 朱瑞霞, 李瞿, 等. LOX-1基因多态性与腔隙性脑梗死的相关性研究 [J]. 解剖科学进展, 2016, 22(2): 130-132, 135.
|
22 |
Rempe RG, Hartz AMS, Bauer B, et al. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers [J]. J Cereb Blood Flow Metab, 2016, 36(9): 1481-1507.
|
23 |
Kubo M, Hata J, Ninomiya T, et al. A nonsynonymous SNP in PRKCH (protein kinase C eta) increases the risk of cerebral infarction [J]. Nat Genet, 2007, 39(2): 212-217.
|
24 |
程虹, 丁新生, 金庆文, 等. 南京地区汉族腔隙性脑梗死患者蛋白激酶Cη基因多态性的研究 [J]. 临床神经病学杂志, 2011, 24(2): 98-101.
|
25 |
李友, 廖锋, 崔理立, 等. 去整合素金属蛋白酶10基因启动子区多态性变化与腔隙性脑梗死发病风险的关系 [J]. 山东医药, 2014, 54(15): 4-7.
|
26 |
沈乃莹, 闫征, 何培英, 等. 人类白细胞抗原-DQA1*0301等位基因与腔隙性脑梗死的相关性研究 [J]. 中华老年心脑血管病杂志, 2000, 2(6): 391-394.
|
27 |
Duperron MG, Tzourio C, Sargurupremraj M, et al. Burden of dilated perivascular spaces, an emerging marker of cerebral small vessel disease, is highly heritable [J]. Stroke, 2018, 49(2): 282-287.
|
28 |
Yan H, Yang X , Zhao X, et al. Identification of genes and pathways related with cerebral small vessel disease based on a long non-coding RNA-mediated, competitive endogenous RNA network [J]. Exp Ther Med, 2018, 16(1): 121-126.
|
29 |
Ciafaloni E, Ricci E, Shanske S, et al. MELAS: clinical features, biochemistry, and molecular genetics [J]. Ann Neurol, 1992, 31(4): 391-398.
|
30 |
Di Stadio A, Pegoraro V, Giaretta L, et al. Hearing impairment in MELAS: new prospective in clinical use of microRNA, a systematic review [J]. Orphanet J Rare Dis, 2018, 13(1): 35.
|
31 |
Meseguer S, Panadero J, Navarro-Gonzalez C, et al. The MELAS mutation m.3243A>G promotes reactivation of fetal cardiac genes and an epithelial-mesenchymal transition-like program via dysregulation of miRNAs [J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(9 Pt B): 3022-3037.
|
32 |
Prabhakar P, Chandra SR, Christopher R, et al. Circulating microRNAs as potential biomarkers for the identification of vascular dementia due to cerebral small vessel disease [J]. Age Ageing, 2017, 46(5): 861-864.
|
33 |
Birk S, Edvinsson L, Olesen J, et al. Analysis of the effects of phosphodiesterase type 3 and 4 inhibitors in cerebral arteries [J]. Eur J Pharmacol, 2004, 489(1-2): 93-100.
|
34 |
Yasmeen S, Kaur S, Mirza AH, et al. miRNA-27a-3p and miRNA-222-3p as novel modulators of phosphodiesterase 3a (PDE3A) in cerebral microvascular endothelial cells [J]. Mol Neurobiol, 2019, 56(8): 5304-5314.
|
35 |
Zhu X, Yin L, Theisen M, et al. Systemic mRNA therapy for the treatment of fabry disease: preclinical studies in wild-type mice, fabry mouse model, and wild-type non-human primates [J]. Am J Hum Genet, 2019, 104(4): 625-637.
|