切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (04) : 212 -217. doi: 10.11817/j.issn.1673-9248.2021.04.003

专家论坛

脑小血管病的早期识别及磁共振成像诊断新进展
许衡衡1, 徐运1,()   
  1. 1. 210008 南京大学医学院附属鼓楼医院神经内科
  • 收稿日期:2020-12-13 出版日期:2021-08-09
  • 通信作者: 徐运
  • 基金资助:
    国家重点研发计划(2016YFCl300504); 国家自然科学基金(81630028); 江苏省科技厅医学重点项目(BE2016610); 江苏省医学重点学科(ZDXKA2016020)

Advance in early recognition and magnetic resonance imaging diagnosis of cerebral small vessel disease

Hengheng Xu1, Yun Xu1,()   

  1. 1. Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
  • Received:2020-12-13 Published:2021-08-09
  • Corresponding author: Yun Xu
引用本文:

许衡衡, 徐运. 脑小血管病的早期识别及磁共振成像诊断新进展[J]. 中华脑血管病杂志(电子版), 2021, 15(04): 212-217.

Hengheng Xu, Yun Xu. Advance in early recognition and magnetic resonance imaging diagnosis of cerebral small vessel disease[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2021, 15(04): 212-217.

脑小血管病(CSVD)是指各种病因导致的累及脑小动脉、穿支动脉和小静脉的一组病理学综合征。对脑小血管病患者的神经病理学研究显示,炎症和内皮细胞功能障碍在其中发挥着关键作用,对相关领域的进一步研究有望成为深入了解CSVD的重要手段。近年随着MRI扫描场强的不断提高以及动脉自旋标记灌注成像、弥散张量成像等新序列在临床的运用,临床医师能够评估更小的脑结构和病变,使得在症状出现之前就能对CSVD的病理特征进行早期识别。

Cerebral small vessel disease (CSVD) refers to a series of pathological syndromes resulted from the pathophysiological changes in small arteries, perforating arteries and venules. Neuropathological studies of patients with CSVD have shown that inflammation and endothelial dysfunction play a key role in it, and further research in related fields would become an important means of understanding CSVD. In recent years, with the continuous improvement of MRI scanning intensity and the clinical development of new sequences, such as arterial spin-labeled perfusion imaging and diffusion tensor imaging, clinicians are able to evaluate smaller brain structures and lesions than ever before, so that the pathological features of CSVD can be identified at an very early stage before symptoms appear.

1
Cannistraro R, Badi M, Eidelman B, et al. CNS small vessel disease: A clinical review [J]. Neurology, 2019, 92(24): 1146-1156.
2
顾雨铖, 徐运. 脑小血管病与血管性认知损害: 关注神经影像学 [J]. 国际脑血管病杂志, 2017, 25(3): 244-250.
3
Horsburgh K, Wardlaw JM, van Agtmael T, et al. Small vessels, dementia and chronic diseases – molecular mechanisms and pathophysiology [J]. Clini Sci (Lond), 2018, 132(8): 851-868.
4
Thrippleton M, Backes W, Sourbron S, et al. Quantifying blood-brain barrier leakage in small vessel disease: Review and consensus recommendations [J]. Alzheimers Dement, 2019, 15(6): 840-858.
5
Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration [J]. Lancet Neurol, 2013, 12(8): 822-838.
6
Cuadrado-Godia E, Dwivedi P, Sharma S, et al. Cerebral small vessel disease: a review focusing on pathophysiology, biomarkers, and machine learning strategies [J]. J Stroke, 2018, 20(3): 302-320.
7
Noz MP, Ter Telgte A, Wiegertjes K, et al. Trained immunity characteristics are associated with progressive cerebral small vessel disease [J]. Stroke, 2018, 49(12): 2910-2917.
8
Fisher CM. Lacunes: Small, deep cerebral infarcts [J]. Neurology, 1965, 15(8): 774-774.
9
Fisher CM. Lacunar strokes and infarcts: a review [J]. Neurology, 1982, 32(8): 871-876.
10
Fisher CM. Lacunar infarcts – a Review [J]. Cerebrovasc Dis, 1991, 1(6): 311-320.
11
Caplan LR. Lacunar infarction and small vessel disease: pathology and pathophysiology [J]. J Stroke, 2015, 17(1): 2-6.
12
Yamada M. Cerebral amyloid angiopathy: emerging concepts [J]. J Stroke, 2015, 17(1): 17-30.
13
Reijmer YD, van Veluw SJ, Greenberg SM. Ischemic brain injury in cerebral amyloid angiopathy [J]. J Cereb Blood Flow Metab, 2016, 36(1): 40-54.
14
Ito J, Nozaki H, Toyoshima Y, et al. Histopathologic features of an autopsied patient with cerebral small vessel disease and a heterozygous HTRA1 mutation: CSVD with HTRA1 mutation [J]. Neuropathology, 2018, 38(4): 428-432.
15
Markus HS. Genes, endothelial function and cerebral small vessel disease in man [J]. Exp Physiol, 2008, 93(1): 121-127.
16
Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging [J]. Lancet Neurol, 2013, 12(5): 483-497.
17
Lavallée PC, Labreuche J, Faille D, et al. Circulating markers of endothelial dysfunction and platelet activation in patients with severe symptomatic cerebral small vessel disease [J]. Cerebrovasc Dis, 2013, 36(2): 131-138.
18
Rouhl RPW, JGMC Damoiseaux, Lodder J, et al. Vascular inflammation in cerebral small vessel disease [J]. Neurobiol Aging, 2011, 33(8): 1800-1806.
19
Seo SW, Kang CK, Kim SH, et al. Measurements of lenticulostriate arteries using 7T MRI: new imaging markers for subcortical vascular dementia [J]. J Neurol Sci, 2012, 322(1-2): 200-205.
20
Kang CK, Park CA, Lee H, et al. Hypertension correlates with lenticulostriate arteries visualized by 7T magnetic resonance angiography [J]. Hypertension, 2009, 54(5): 1050-1056.
21
Satoshi Y, Hiroyuki K, Ai C, et al. Evaluation of lenticulostriate arteries changes by 7 T magnetic resonance angiography in type 2 diabetes [J]. J Atheroscler Thromb, 2018, 25(10): 1067-1075.
22
Kang CK, Park CA, Lee DS, et al. Velocity measurement of microvessels using phase-contrast magnetic resonance angiography at 7 tesla MRI [J]. Magn Reson Med, 2016, 75(4): 1640-1646.
23
Dsc WLN, Beng FP, Volkau I, et al. Comparison of magnetic resonance angiography scans on 1.5, 3, and 7 Tesla units: a quantitative study of 3-dimensional cerebrovasculature [J]. J Neuroimaging, 2013, 23(1): 10.
24
Shaaban CE, Aizenstein HJ, Jorgensen DR, et al. In vivo imaging of venous side cerebral small-vessel disease in older adults: an MRI method at 7T [J]. AJNR Am J Neuroradiol, 2017, 38(10): 1923-1928.
25
Kuijf HJ, Bouvy WH, Zwanenburg JJM, et al. Quantification of deep medullary veins at 7 T brain MRI [J]. Eur Radiol, 2016, 26(10): 3412-3418.
26
Zhu XJ, Du B, Lou X, et al. Morphologic characteristics of atherosclerotic middle cerebral arteries on 3T high-resolution MRI [J]. AJNR Am J Neuroradiol, 2013, 34(9): 1717-1722.
27
Mossa-Basha M, Alexander M, Gaddikeri S, et al. Vessel wall imaging for intracranial vascular disease evaluation [J]. J Neurointerv Surg, 2016, 8(11): 1154-1159.
28
De Cocker LJL, Lindenholz A, Zwanenburg JJM, et al. Clinical vascular imaging in the brain at 7T [J]. Neuroimage, 2018, 168: 452-458.
29
Dieleman N, van der Kolk AG, van Veluw SJ, et al. Patterns of intracranial vessel wall changes in relation to ischemic infarcts [J]. Neurology, 2014, 83(15): 1316-1320.
30
Miguel MP, Knopman DS. Developmental aspects of the intracerebral microvasculature and perivascular spaces: insights into brain response to late-life diseases [J]. J Neuropathol Exp Neurol, 2011,70(12): 1060-1069.
31
Bouvy WH, Biessels GJ, Kuijf HJ, et al. Visualization of perivascular spaces and perforating arteries with 7 T magnetic resonance imaging [J]. Invest Radiol, 2014, 49(5): 307-313.
32
Bouvy WH, Zwanenburg JJ, Reinink R, et al. Perivascular spaces on 7 Tesla brain MRI are related to markers of small vessel disease but not to age or cardiovascular risk factors [J]. J Cereb Blood Flow Metab, 2016, 36(10): 1708-1717.
33
Bouvy WH, van Veluw SJ, Kuijf HJ, et al. Microbleeds colocalize with enlarged juxtacortical perivascular spaces in amnestic mild cognitive impairment and early Alzheimer’s disease: a 7 Tesla MRI study [J]. J Cereb Blood Flow Metab, 2019, 40(4): 739-746.
34
Conijn MMA, Geerlings MI, Biessels GJ, et al. Cerebral microbleeds on MR imaging: comparison between 1.5 and 7T [J]. AJNR Am J Neuroradiol, 2011, 32(6): 1043-1049.
35
Conijn MMA, Geerlings MI, Luijten PR, et al. Visualization of cerebral microbleeds with dual-echo T2*-weighted magnetic resonance imaging at 7.0 T [J]. J Magn Reson Imaging, 2010, 32(1): 52-59.
36
Bresser JD, Brundel M, Conijn MM, et al. Visual cerebral microbleed detection on 7T MR imaging: reliability and effects of image processing [J]. AJNR Am J Neuroradiol, 2012, 34(6): E61-E64.
37
Reuck DJ, Auger F, Durieux N, et al. The topography of cortical microbleeds in frontotemporal lobar degeneration: a post-mortem 7.0-tesla magnetic resonance study [J]. Folia Neuropathol, 2016, 54(2): 149-155.
38
Theysohn JM, Kraff O, Maderwald S, et al. 7 Tesla MRI of microbleeds and white matter lesions as seen in vascular dementia [J]. J Magn Reson Imaging, 2011, 33(4): 782-791.
39
Bian W, Banerjee S, Kelly DA , et al.Simultaneous imaging of radiation-induced cerebral microbleeds, arteries and veins, using a multiple gradient echo sequence at 7 Tesla [J]. J Magn Reson Imaging, 2015, 42(2): 269-279.
40
Kollia K, Maderwald S, Putzki N , et al. First clinical study on ultra-high-field MR imaging in patients with multiple sclerosis: comparison of 1.5T and 7T [J]. AJNR Am J Neuroradiol, 2009, 30(4): 699-702.
41
van der Land Veronica, Zwanenburg JJM, Fijnvandraat K, et al. Cerebral lesions on 7 tesla MRI in patients with sickle cell anemia [J]. Cerebrovasc Dis, 2015, 39(3-4): 181-189.
42
de Graaf WL, Kilsdonk ID, Lopez-Soriano A, et al. Clinical application of multi-contrast 7-T MR imaging in multiple sclerosis: increased lesion detection compared to 3 T confined to grey matter [J]. Eur Radiol, 2013, 23(2): 528-540.
43
Tallantyre EC, Morgan PS, Dixon JE, , et al. 3 Tesla and 7 Tesla MRI of multiple sclerosis cortical lesions [J]. J Magn Reson Imaging, 2010, 32(4): 971-977.
44
Nielsen AS, Kinkel RP, Tinelli E, et al. Focal cortical lesion detection in multiple sclerosis: 3 Tesla DIR versus 7 Tesla FLASH-T2 [J]. J Magn Reson Imaging, 2012, 35(3): 537-542.
45
Dury RJ, Falah Y, Gowland PA, et al. Ultra-high-field arterial spin labelling MRI for non-contrast assessment of cortical lesion perfusion in multiple sclerosis [J]. Eur Radiol, 2019, 29(4): 2027-2033.
46
Kalaria RN, Kenny RA, Ballard CG, et al. Towards defining the neuropathological substrates of vascular dementia [J]. J Neurol Sci, 2004, 226(1-2): 75-80.
47
White L, Petrovitch H, Hardman J, et al. Cerebrovascular pathology and dementia in autopsied honolulu-asia aging study participants [J]. Ann N Y Acad Sci, 2002, 977(1): 9-23.
48
Greenberg AS, Smith PEM, Schneider TAJ, et al. Cerebral microinfarcts: the invisible lesions [J]. Lancet Neurol, 2012, 11(3): 272-282.
49
Brundel M, Reijmer YD, Van Veluw SJ, et al. Cerebral microvascular lesions on high-resolution 7-Tesla MRI in patients with type 2 diabetes [J]. Diabetes, 2014, 63(10): 3523-3529.
50
Van Veluw SJ, Zwanenburg JJM, Engelen-Lee JY, et al. In vivo detection of cerebral cortical microinfarcts with high-resolution 7T MRI [J]. J Cereb Blood Flow Metab, 2013, 33(3): 322-329.
51
De Reuck JL, Deramecourt V, Auger F, et al. The significance of cortical cerebellar microbleeds and microinfarcts in neurodegenerative and cerebrovascular diseases [J]. Cerebrovasc Dis, 2015, 39(2): 138-143.
52
Benjamin P, Viessmann O, Mackinnon AD, et al. 7 Tesla MRI in cerebral small vessel disease [J]. Int J Stroke, 2015, 10(5): 659-664.
53
Sadeghi-Tarakameh A, DelaBarre L, Lagore RL, et al. In vivo human head MRI at 10.5T: a radiofrequency safety study and preliminary imaging results [J]. Magn Reson Med, 2020, 84(1): 484-496.
54
Hu H. Recent Advances of bioresponsive nano-sized contrast agents for ultra-high-field magnetic resonance imaging [J]. Front Chem, 2020, 8: 203.
55
Wang T, Hou Y, Bu B,, et al. Timely visualization of the collaterals formed during acute ischemic stroke with Fe3O4 Nanoparticle-based MR imaging probe [J]. Small, 2018, 14(23): e1800573.
56
Emblem KE, Mouridsen K, Bjornerud A, et al. Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy [J]. Nat Med, 2013, 19(9): 1178-1183.
57
Kłos J, van Laar PJ, Sinnige PF, et al. Quantifying effects of radiotherapy-induced microvascular injury; review of established and emerging brain MRI techniques [J]. Radiother Oncol, 2019, 140: 41-53.
58
MacDonald ME, Frayne R. Cerebrovascular MRI: a review of state-of-the-art approaches, methods and techniques [J]. NMR Biomed, 2015, 28(7): 767-791.
59
Alsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia [J]. Magn Reson Med, 2015, 73(1): 102-116.
60
Telischak NA, Detre JA, Zaharchuk G. Arterial spin labeling MRI: clinical applications in the brain: arterial spin labeling MRI [J]. J Magn Reson Imaging, 2014, 41(5):1165-1180.
61
Dolui S, Li Z, Nasrallah IM, , et al. Arterial spin labeling versus 18F-FDG-PET to identify mild cognitive impairment [J]. Neuroimage Clin, 2020, 25: 102146.
62
Tang S, Liu X, He L, et al. Application of postlabeling delay time in 3-dimensional pseudocontinuous arterial spin-Labeled perfusion imaging in normal children [J]. J Comput Assist Tomogr, 2019, 43(5): 697-707.
63
Phellan R, Lindner T, Helle M, et al. A methodology for generating four-dimensional arterial spin labeling MR angiography virtual phantoms [J]. Med Image Anal, 2019, 56: 184-192.
64
Shao X, Ma SJ, Casey M, et al. Mapping water exchange across the blood–brain barrier using 3D diffusion‐prepared arterial spin labeled perfusion MRI [J]. Magn Reson Med, 2018, 81(5): 3065-3079.
65
Tiwari YV, Lu J, Shen Q, et al. Magnetic resonance imaging of blood-brain barrier permeability in ischemic stroke using diffusion-weighted arterial spin labeling in rats [J]. J Cereb Blood Flow Metab, 2017, 37(8): 2706-2715.
66
Bahrani AA, Powell DK, Yu G, et al. White matter hyperintensity associations with cerebral blood flow in elderly subjects stratified by cerebrovascular risk [J]. J Stroke Cerebrovasc Dis, 2017, 26(4): 779-786.
67
Molko N, Pappata S, Mangin JF, et al. Diffusion tensor imaging study of subcortical gray matter in CADASIL [J]. Stroke, 2001, 32(9): 2049-2054.
68
O'Sullivan M, Morris RG, Huckstep B. Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis [J]. J Neurol Neurosurg Psychiatry, 2004, 75(3): 441-447.
69
Alba-Ferrara LM, de Erausquin GA. What does anisotropy measure? Insights from increased and decreased anisotropy in selective fiber tracts in schizophrenia [J]. Front Integr Neurosci, 2013, 7: 9.
70
Pasternak O, Sochen N, Gur Y, et al. Free water elimination and mapping from diffusion MRI [J]. Magn Reson Med, 2009, 62(3): 717-730.
71
Ji F, Pasternak O, Liu S, et al. Distinct white matter microstructural abnormalities and extracellular water increases relate to cognitive impairment in Alzheimer's disease with and without cerebrovascular disease [J]. Alzheimers Res Ther, 2017, 9(1): 63.
72
Cannistraro R, Badi M, Eidelman B, et al. CNS small vessel disease: A clinical review [J]. Neurology, 2019, 92(24): 1146-1156.
73
Van Opstal AM, Van Rooden S, Van Harten T, et al. Cerebrovascular function in presymptomatic and symptomatic individuals with hereditary cerebral amyloid angiopathy: a case-control study [J]. Lancet Neurol, 2017, 16(2): 115-122.
74
Takamura T, Hanakawa T. Clinical utility of resting-state functional connectivity magnetic resonance imaging for mood and cognitive disorders [J]. J Neural Transm (Vienna), 2017, 124(7): 821-839.
75
Brian JE. Carbon dioxide and the cerebral circulation [J]. Anesthesiology, 1998, 88(5): 1365-1386.
76
Kastrup A, Krüger G, Neumann-Haefelin T, et al. Assessment of cerebrovascular reactivity with functional magnetic resonance imaging: comparison of CO2 and breath holding [J]. Magn Reson Imaging, 2001, 19(1): 13-20.
77
Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease [J]. Neuron, 2017, 96(1): 17-42.
78
Thrippleton MJ, Backes WH, Sourbron S, et al. Quantifying blood-brain barrier leakage in small vessel disease: review and consensus recommendations [J]. Alzheimers Dement, 2019, 15(6): 840-858.
79
Heye A, Culling R, Valdés Hernández MC, et al. Assessment of blood-brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review [J]. Neuroimage Clin, 2014, 6: 262-274.
80
Sourbron S, Buckley D. Classic models for dynamic contrast-enhanced MRI [J]. NMR Biomed, 2013, 26(8): 1004-1027.
[1] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[2] 张莲莲, 惠品晶, 丁亚芳. 颈部血管超声在粥样硬化斑块易损性评估中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 816-821.
[3] 刘冰茹, 刘皓希, 陈莹, 赖世伟, 陈蓉. 疑似乳腺癌的韧带样纤维瘤病一例[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 314-317.
[4] 叶艳娜, 叶瑞婷, 陈艳玲, 彭雯, 刘乐, 肖文秋, 黄辉, 李明深, 钟慕仪, 叶娴. 基于影像学表现和临床病理特征预测良性与交界性乳腺叶状肿瘤复发的列线图模型[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 229-237.
[5] 方心俞, 黄昌瑜, 胡洪新, 林溢铭, 陈旸, 张楠心, 张文明. 膝关节软骨下不全骨折的治疗选择与疗效分析[J]. 中华关节外科杂志(电子版), 2023, 17(04): 583-587.
[6] 董晓燕, 赵琪, 唐军, 张莉, 杨晓燕, 李姣. 奥密克戎变异株感染所致新型冠状病毒感染疾病新生儿的临床特征分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 595-603.
[7] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[8] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[9] 钟广俊, 刘春华, 朱万森, 徐晓雷, 王兆军. MRI联合不同扫描序列在胃癌术前分期诊断及化疗效果和预后的评估[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 378-382.
[10] 吴钰娴, 冯亚园, 霍雷, 贾宁阳, 张娟. 原发性肝脏淋巴瘤的影像学诊断价值研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 349-353.
[11] 冯海涛, 徐涛, 刘文阳, 孙晨, 曹尚超. 三维动脉自旋标记联合动态对比增强MRI对脑胶质瘤术后复发及放射性脑坏死诊断的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 262-265.
[12] 王志文, 郑雪梅, 张庆坤, 王海江. 自发性低颅压综合征75例临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(04): 398-401.
[13] 岳永飞, 朱利平, 王晓艳. 磁共振成像技术在预测胎盘植入性疾病患者剖宫产术中出血量的研究[J]. 中华产科急救电子杂志, 2023, 12(03): 167-172.
[14] 徐长贺, 尚海龙, 于乐林, 王一超, 赵世伟, 沈慧, 叶娟, 杜红娣, 王莺, 沈海林. 反复发作的糖尿病纹状体病的影像学特征并文献复习[J]. 中华诊断学电子杂志, 2023, 11(03): 165-168.
[15] 赵暾, 徐霁华, 何有娣, 鲁明. 误诊为脑梗死且险些溶栓的急性自发微量脑出血一例[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 369-372.
阅读次数
全文


摘要