1 |
Cannistraro R, Badi M, Eidelman B, et al. CNS small vessel disease: A clinical review [J]. Neurology, 2019, 92(24): 1146-1156.
|
2 |
顾雨铖, 徐运. 脑小血管病与血管性认知损害: 关注神经影像学 [J]. 国际脑血管病杂志, 2017, 25(3): 244-250.
|
3 |
Horsburgh K, Wardlaw JM, van Agtmael T, et al. Small vessels, dementia and chronic diseases – molecular mechanisms and pathophysiology [J]. Clini Sci (Lond), 2018, 132(8): 851-868.
|
4 |
Thrippleton M, Backes W, Sourbron S, et al. Quantifying blood-brain barrier leakage in small vessel disease: Review and consensus recommendations [J]. Alzheimers Dement, 2019, 15(6): 840-858.
|
5 |
Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration [J]. Lancet Neurol, 2013, 12(8): 822-838.
|
6 |
Cuadrado-Godia E, Dwivedi P, Sharma S, et al. Cerebral small vessel disease: a review focusing on pathophysiology, biomarkers, and machine learning strategies [J]. J Stroke, 2018, 20(3): 302-320.
|
7 |
Noz MP, Ter Telgte A, Wiegertjes K, et al. Trained immunity characteristics are associated with progressive cerebral small vessel disease [J]. Stroke, 2018, 49(12): 2910-2917.
|
8 |
Fisher CM. Lacunes: Small, deep cerebral infarcts [J]. Neurology, 1965, 15(8): 774-774.
|
9 |
Fisher CM. Lacunar strokes and infarcts: a review [J]. Neurology, 1982, 32(8): 871-876.
|
10 |
Fisher CM. Lacunar infarcts – a Review [J]. Cerebrovasc Dis, 1991, 1(6): 311-320.
|
11 |
Caplan LR. Lacunar infarction and small vessel disease: pathology and pathophysiology [J]. J Stroke, 2015, 17(1): 2-6.
|
12 |
Yamada M. Cerebral amyloid angiopathy: emerging concepts [J]. J Stroke, 2015, 17(1): 17-30.
|
13 |
Reijmer YD, van Veluw SJ, Greenberg SM. Ischemic brain injury in cerebral amyloid angiopathy [J]. J Cereb Blood Flow Metab, 2016, 36(1): 40-54.
|
14 |
Ito J, Nozaki H, Toyoshima Y, et al. Histopathologic features of an autopsied patient with cerebral small vessel disease and a heterozygous HTRA1 mutation: CSVD with HTRA1 mutation [J]. Neuropathology, 2018, 38(4): 428-432.
|
15 |
Markus HS. Genes, endothelial function and cerebral small vessel disease in man [J]. Exp Physiol, 2008, 93(1): 121-127.
|
16 |
Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging [J]. Lancet Neurol, 2013, 12(5): 483-497.
|
17 |
Lavallée PC, Labreuche J, Faille D, et al. Circulating markers of endothelial dysfunction and platelet activation in patients with severe symptomatic cerebral small vessel disease [J]. Cerebrovasc Dis, 2013, 36(2): 131-138.
|
18 |
Rouhl RPW, JGMC Damoiseaux, Lodder J, et al. Vascular inflammation in cerebral small vessel disease [J]. Neurobiol Aging, 2011, 33(8): 1800-1806.
|
19 |
Seo SW, Kang CK, Kim SH, et al. Measurements of lenticulostriate arteries using 7T MRI: new imaging markers for subcortical vascular dementia [J]. J Neurol Sci, 2012, 322(1-2): 200-205.
|
20 |
Kang CK, Park CA, Lee H, et al. Hypertension correlates with lenticulostriate arteries visualized by 7T magnetic resonance angiography [J]. Hypertension, 2009, 54(5): 1050-1056.
|
21 |
Satoshi Y, Hiroyuki K, Ai C, et al. Evaluation of lenticulostriate arteries changes by 7 T magnetic resonance angiography in type 2 diabetes [J]. J Atheroscler Thromb, 2018, 25(10): 1067-1075.
|
22 |
Kang CK, Park CA, Lee DS, et al. Velocity measurement of microvessels using phase-contrast magnetic resonance angiography at 7 tesla MRI [J]. Magn Reson Med, 2016, 75(4): 1640-1646.
|
23 |
Dsc WLN, Beng FP, Volkau I, et al. Comparison of magnetic resonance angiography scans on 1.5, 3, and 7 Tesla units: a quantitative study of 3-dimensional cerebrovasculature [J]. J Neuroimaging, 2013, 23(1): 10.
|
24 |
Shaaban CE, Aizenstein HJ, Jorgensen DR, et al. In vivo imaging of venous side cerebral small-vessel disease in older adults: an MRI method at 7T [J]. AJNR Am J Neuroradiol, 2017, 38(10): 1923-1928.
|
25 |
Kuijf HJ, Bouvy WH, Zwanenburg JJM, et al. Quantification of deep medullary veins at 7 T brain MRI [J]. Eur Radiol, 2016, 26(10): 3412-3418.
|
26 |
Zhu XJ, Du B, Lou X, et al. Morphologic characteristics of atherosclerotic middle cerebral arteries on 3T high-resolution MRI [J]. AJNR Am J Neuroradiol, 2013, 34(9): 1717-1722.
|
27 |
Mossa-Basha M, Alexander M, Gaddikeri S, et al. Vessel wall imaging for intracranial vascular disease evaluation [J]. J Neurointerv Surg, 2016, 8(11): 1154-1159.
|
28 |
De Cocker LJL, Lindenholz A, Zwanenburg JJM, et al. Clinical vascular imaging in the brain at 7T [J]. Neuroimage, 2018, 168: 452-458.
|
29 |
Dieleman N, van der Kolk AG, van Veluw SJ, et al. Patterns of intracranial vessel wall changes in relation to ischemic infarcts [J]. Neurology, 2014, 83(15): 1316-1320.
|
30 |
Miguel MP, Knopman DS. Developmental aspects of the intracerebral microvasculature and perivascular spaces: insights into brain response to late-life diseases [J]. J Neuropathol Exp Neurol, 2011,70(12): 1060-1069.
|
31 |
Bouvy WH, Biessels GJ, Kuijf HJ, et al. Visualization of perivascular spaces and perforating arteries with 7 T magnetic resonance imaging [J]. Invest Radiol, 2014, 49(5): 307-313.
|
32 |
Bouvy WH, Zwanenburg JJ, Reinink R, et al. Perivascular spaces on 7 Tesla brain MRI are related to markers of small vessel disease but not to age or cardiovascular risk factors [J]. J Cereb Blood Flow Metab, 2016, 36(10): 1708-1717.
|
33 |
Bouvy WH, van Veluw SJ, Kuijf HJ, et al. Microbleeds colocalize with enlarged juxtacortical perivascular spaces in amnestic mild cognitive impairment and early Alzheimer’s disease: a 7 Tesla MRI study [J]. J Cereb Blood Flow Metab, 2019, 40(4): 739-746.
|
34 |
Conijn MMA, Geerlings MI, Biessels GJ, et al. Cerebral microbleeds on MR imaging: comparison between 1.5 and 7T [J]. AJNR Am J Neuroradiol, 2011, 32(6): 1043-1049.
|
35 |
Conijn MMA, Geerlings MI, Luijten PR, et al. Visualization of cerebral microbleeds with dual-echo T2*-weighted magnetic resonance imaging at 7.0 T [J]. J Magn Reson Imaging, 2010, 32(1): 52-59.
|
36 |
Bresser JD, Brundel M, Conijn MM, et al. Visual cerebral microbleed detection on 7T MR imaging: reliability and effects of image processing [J]. AJNR Am J Neuroradiol, 2012, 34(6): E61-E64.
|
37 |
Reuck DJ, Auger F, Durieux N, et al. The topography of cortical microbleeds in frontotemporal lobar degeneration: a post-mortem 7.0-tesla magnetic resonance study [J]. Folia Neuropathol, 2016, 54(2): 149-155.
|
38 |
Theysohn JM, Kraff O, Maderwald S, et al. 7 Tesla MRI of microbleeds and white matter lesions as seen in vascular dementia [J]. J Magn Reson Imaging, 2011, 33(4): 782-791.
|
39 |
Bian W, Banerjee S, Kelly DA , et al.Simultaneous imaging of radiation-induced cerebral microbleeds, arteries and veins, using a multiple gradient echo sequence at 7 Tesla [J]. J Magn Reson Imaging, 2015, 42(2): 269-279.
|
40 |
Kollia K, Maderwald S, Putzki N , et al. First clinical study on ultra-high-field MR imaging in patients with multiple sclerosis: comparison of 1.5T and 7T [J]. AJNR Am J Neuroradiol, 2009, 30(4): 699-702.
|
41 |
van der Land Veronica, Zwanenburg JJM, Fijnvandraat K, et al. Cerebral lesions on 7 tesla MRI in patients with sickle cell anemia [J]. Cerebrovasc Dis, 2015, 39(3-4): 181-189.
|
42 |
de Graaf WL, Kilsdonk ID, Lopez-Soriano A, et al. Clinical application of multi-contrast 7-T MR imaging in multiple sclerosis: increased lesion detection compared to 3 T confined to grey matter [J]. Eur Radiol, 2013, 23(2): 528-540.
|
43 |
Tallantyre EC, Morgan PS, Dixon JE, , et al. 3 Tesla and 7 Tesla MRI of multiple sclerosis cortical lesions [J]. J Magn Reson Imaging, 2010, 32(4): 971-977.
|
44 |
Nielsen AS, Kinkel RP, Tinelli E, et al. Focal cortical lesion detection in multiple sclerosis: 3 Tesla DIR versus 7 Tesla FLASH-T2 [J]. J Magn Reson Imaging, 2012, 35(3): 537-542.
|
45 |
Dury RJ, Falah Y, Gowland PA, et al. Ultra-high-field arterial spin labelling MRI for non-contrast assessment of cortical lesion perfusion in multiple sclerosis [J]. Eur Radiol, 2019, 29(4): 2027-2033.
|
46 |
Kalaria RN, Kenny RA, Ballard CG, et al. Towards defining the neuropathological substrates of vascular dementia [J]. J Neurol Sci, 2004, 226(1-2): 75-80.
|
47 |
White L, Petrovitch H, Hardman J, et al. Cerebrovascular pathology and dementia in autopsied honolulu-asia aging study participants [J]. Ann N Y Acad Sci, 2002, 977(1): 9-23.
|
48 |
Greenberg AS, Smith PEM, Schneider TAJ, et al. Cerebral microinfarcts: the invisible lesions [J]. Lancet Neurol, 2012, 11(3): 272-282.
|
49 |
Brundel M, Reijmer YD, Van Veluw SJ, et al. Cerebral microvascular lesions on high-resolution 7-Tesla MRI in patients with type 2 diabetes [J]. Diabetes, 2014, 63(10): 3523-3529.
|
50 |
Van Veluw SJ, Zwanenburg JJM, Engelen-Lee JY, et al. In vivo detection of cerebral cortical microinfarcts with high-resolution 7T MRI [J]. J Cereb Blood Flow Metab, 2013, 33(3): 322-329.
|
51 |
De Reuck JL, Deramecourt V, Auger F, et al. The significance of cortical cerebellar microbleeds and microinfarcts in neurodegenerative and cerebrovascular diseases [J]. Cerebrovasc Dis, 2015, 39(2): 138-143.
|
52 |
Benjamin P, Viessmann O, Mackinnon AD, et al. 7 Tesla MRI in cerebral small vessel disease [J]. Int J Stroke, 2015, 10(5): 659-664.
|
53 |
Sadeghi-Tarakameh A, DelaBarre L, Lagore RL, et al. In vivo human head MRI at 10.5T: a radiofrequency safety study and preliminary imaging results [J]. Magn Reson Med, 2020, 84(1): 484-496.
|
54 |
Hu H. Recent Advances of bioresponsive nano-sized contrast agents for ultra-high-field magnetic resonance imaging [J]. Front Chem, 2020, 8: 203.
|
55 |
Wang T, Hou Y, Bu B,, et al. Timely visualization of the collaterals formed during acute ischemic stroke with Fe3O4 Nanoparticle-based MR imaging probe [J]. Small, 2018, 14(23): e1800573.
|
56 |
Emblem KE, Mouridsen K, Bjornerud A, et al. Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy [J]. Nat Med, 2013, 19(9): 1178-1183.
|
57 |
Kłos J, van Laar PJ, Sinnige PF, et al. Quantifying effects of radiotherapy-induced microvascular injury; review of established and emerging brain MRI techniques [J]. Radiother Oncol, 2019, 140: 41-53.
|
58 |
MacDonald ME, Frayne R. Cerebrovascular MRI: a review of state-of-the-art approaches, methods and techniques [J]. NMR Biomed, 2015, 28(7): 767-791.
|
59 |
Alsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia [J]. Magn Reson Med, 2015, 73(1): 102-116.
|
60 |
Telischak NA, Detre JA, Zaharchuk G. Arterial spin labeling MRI: clinical applications in the brain: arterial spin labeling MRI [J]. J Magn Reson Imaging, 2014, 41(5):1165-1180.
|
61 |
Dolui S, Li Z, Nasrallah IM, , et al. Arterial spin labeling versus 18F-FDG-PET to identify mild cognitive impairment [J]. Neuroimage Clin, 2020, 25: 102146.
|
62 |
Tang S, Liu X, He L, et al. Application of postlabeling delay time in 3-dimensional pseudocontinuous arterial spin-Labeled perfusion imaging in normal children [J]. J Comput Assist Tomogr, 2019, 43(5): 697-707.
|
63 |
Phellan R, Lindner T, Helle M, et al. A methodology for generating four-dimensional arterial spin labeling MR angiography virtual phantoms [J]. Med Image Anal, 2019, 56: 184-192.
|
64 |
Shao X, Ma SJ, Casey M, et al. Mapping water exchange across the blood–brain barrier using 3D diffusion‐prepared arterial spin labeled perfusion MRI [J]. Magn Reson Med, 2018, 81(5): 3065-3079.
|
65 |
Tiwari YV, Lu J, Shen Q, et al. Magnetic resonance imaging of blood-brain barrier permeability in ischemic stroke using diffusion-weighted arterial spin labeling in rats [J]. J Cereb Blood Flow Metab, 2017, 37(8): 2706-2715.
|
66 |
Bahrani AA, Powell DK, Yu G, et al. White matter hyperintensity associations with cerebral blood flow in elderly subjects stratified by cerebrovascular risk [J]. J Stroke Cerebrovasc Dis, 2017, 26(4): 779-786.
|
67 |
Molko N, Pappata S, Mangin JF, et al. Diffusion tensor imaging study of subcortical gray matter in CADASIL [J]. Stroke, 2001, 32(9): 2049-2054.
|
68 |
O'Sullivan M, Morris RG, Huckstep B. Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis [J]. J Neurol Neurosurg Psychiatry, 2004, 75(3): 441-447.
|
69 |
Alba-Ferrara LM, de Erausquin GA. What does anisotropy measure? Insights from increased and decreased anisotropy in selective fiber tracts in schizophrenia [J]. Front Integr Neurosci, 2013, 7: 9.
|
70 |
Pasternak O, Sochen N, Gur Y, et al. Free water elimination and mapping from diffusion MRI [J]. Magn Reson Med, 2009, 62(3): 717-730.
|
71 |
Ji F, Pasternak O, Liu S, et al. Distinct white matter microstructural abnormalities and extracellular water increases relate to cognitive impairment in Alzheimer's disease with and without cerebrovascular disease [J]. Alzheimers Res Ther, 2017, 9(1): 63.
|
72 |
Cannistraro R, Badi M, Eidelman B, et al. CNS small vessel disease: A clinical review [J]. Neurology, 2019, 92(24): 1146-1156.
|
73 |
Van Opstal AM, Van Rooden S, Van Harten T, et al. Cerebrovascular function in presymptomatic and symptomatic individuals with hereditary cerebral amyloid angiopathy: a case-control study [J]. Lancet Neurol, 2017, 16(2): 115-122.
|
74 |
Takamura T, Hanakawa T. Clinical utility of resting-state functional connectivity magnetic resonance imaging for mood and cognitive disorders [J]. J Neural Transm (Vienna), 2017, 124(7): 821-839.
|
75 |
Brian JE. Carbon dioxide and the cerebral circulation [J]. Anesthesiology, 1998, 88(5): 1365-1386.
|
76 |
Kastrup A, Krüger G, Neumann-Haefelin T, et al. Assessment of cerebrovascular reactivity with functional magnetic resonance imaging: comparison of CO2 and breath holding [J]. Magn Reson Imaging, 2001, 19(1): 13-20.
|
77 |
Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease [J]. Neuron, 2017, 96(1): 17-42.
|
78 |
Thrippleton MJ, Backes WH, Sourbron S, et al. Quantifying blood-brain barrier leakage in small vessel disease: review and consensus recommendations [J]. Alzheimers Dement, 2019, 15(6): 840-858.
|
79 |
Heye A, Culling R, Valdés Hernández MC, et al. Assessment of blood-brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review [J]. Neuroimage Clin, 2014, 6: 262-274.
|
80 |
Sourbron S, Buckley D. Classic models for dynamic contrast-enhanced MRI [J]. NMR Biomed, 2013, 26(8): 1004-1027.
|