切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (04) : 218 -221. doi: 10.11817/j.issn.1673-9248.2021.04.004

专家论坛

脑小血管病影像学标志物之间关联性研究的进展
李譞婷1, 胡文立1,()   
  1. 1. 100020 首都医科大学附属北京朝阳医院神经内科
  • 收稿日期:2021-02-09 出版日期:2021-08-09
  • 通信作者: 胡文立

Research progress in the association among imaging markers of cerebral small vessel disease

Xuanting Li1, Wenli Hu1,()   

  1. 1. Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
  • Received:2021-02-09 Published:2021-08-09
  • Corresponding author: Wenli Hu
引用本文:

李譞婷, 胡文立. 脑小血管病影像学标志物之间关联性研究的进展[J]. 中华脑血管病杂志(电子版), 2021, 15(04): 218-221.

Xuanting Li, Wenli Hu. Research progress in the association among imaging markers of cerebral small vessel disease[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2021, 15(04): 218-221.

脑小血管病(CSVD)主要包括近期皮层下小梗死、假定血管起源的腔隙、假定血管起源的脑白质高信号、血管周围间隙、脑微出血和脑萎缩6种影像学标志物。CSVD会导致脑卒中、认知下降、运动障碍、情绪异常以及排尿异常等症状。CSVD各种影像学标志物之间的动态演变、互相影响以及对临床症状的协同作用也逐渐成为研究的热点。本文从流行病学、影像学、临床表现和未来展望等方面对CSVD的6种影像学标志物之间的关联性研究展开综述。

The six major imaging markers of cerebral small vessel disease (CSVD) include recent subcortical small infarct, lacune of presumed vascular origin, white matter hyperintensity of presumed vascular origin, perivascular space, cerebral microbleed, and brain atrophy. CSVD can lead to stroke, cognitive decline, movement disorder, mood disturbance, and paruria. It has gradually drawn more attention to the dynamic evolution and mutual influence among these imaging markers, as well as their synergistic effect on clinical symptoms. We review the epidemiology, neuroimaging features and clinical manifestations of these six markers of CSVD and their mutual association, and outline the prospect of future study.

1
Fisher CM. Lacunar strokes and infarcts: a review [J]. Neurology, 1982, 32(8): 871-876.
2
Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration [J]. Lancet Neurol, 2013, 12(8): 822-838.
3
Tsai CF, Thomas B, Sudlow CL. Epidemiology of stroke and its subtypes in Chinese vs white populations: a systematic review [J]. Neurology, 2013, 81(3): 264-272.
4
Poels MM, Ikram MA, van der Lugt A, et al. Incidence of cerebral microbleeds in the general population: the Rotterdam Scan Study [J]. Stroke, 2011, 42(3): 656-661.
5
de Leeuw FE, de Groot JC, Achten E, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study [J]. J Neurol Neurosurg Psychiatry, 2001, 70(1): 9-14.
6
Nakamori M, Hosomi N, Tachiyama K, et al. Lobar microbleeds are associated with cognitive impairment in patients with lacunar infarction [J]. Sci Rep, 2020, 10(1): 16410.
7
Zhang M, Chen M, Wang Q, et al. Relationship between cerebral microbleeds and cognitive function in lacunar infarct [J]. J Int Med Res, 2013, 41(2): 347-355.
8
Yang S, Yuan J, Qin W, et al. Twenty-four-hour ambulatory blood pressure variability is associated with total magnetic resonance imaging burden of cerebral small-vessel disease [J]. Clin Interv Aging, 2018, 13: 1419-1427.
9
Huijts M, Duits A, van Oostenbrugge RJ, et al. Accumulation of MRI markers of cerebral small vessel disease is associated with decreased cognitive function. A study in first-ever Lacunar stroke and hypertensive patients [J]. Front Aging Neurosci, 2013, 5: 72.
10
Shi Y, Wardlaw JM. Update on cerebral small vessel disease: a dynamic whole-brain disease [J]. Stroke Vasc Neurol, 2016, 1(3): 83-92.
11
Norrving B. Evolving concept of small vessel disease through advanced brain imaging [J]. J Stroke, 2015, 17(2): 94-100.
12
Du M, Bai H, Chen J, et al. Magnetic resonance imaging and risk factors for progression of lacunar infarct lesions in Chinese patients [J]. Neuroradiology, 2020, 62(2): 161-166.
13
Kwon HS, Cho AH, Lee MH, et al. Evolution of acute lacunar lesions in terms of size and shape: a PICASSO sub-study [J]. J Neurol, 2019, 266(3): 766-772.
14
Gattringer T, Valdes Hernandez M, Heye A, et al. Predictors of lesion cavitation after recent small subcortical stroke [J]. Transl Stroke Res, 2020, 11(3): 402-411.
15
Zhang X, Ding L, Yuan J, et al. Spatial relationship between acute lacunar infarction and white matter hyperintensities [J]. Eur Neurol, 2015, 74(5-6): 259-266.
16
Xu X, Gao Y, Liu R, et al. Progression of white matter hyperintensities contributes to lacunar infarction [J]. Aging Dis, 2018, 9(3): 444-452.
17
Park JH, Heo SH, Lee MH, et al. White matter hyperintensities and recurrent stroke risk in patients with stroke with small-vessel disease [J]. Eur J Neurol, 2019, 26(6): 911-918.
18
Imaizumi T, Inamura S, Nomura T. Contribution of deep microbleeds to stroke recurrence: differences between patients with past deep intracerebral hemorrhages and lacunar infarctions [J]. J Stroke Cerebrovasc Dis, 2015, 24(8): 1855-1864.
19
Zhou YN, Gao HY, Zhao FF, et al. The study on analysis of risk factors for severity of white matter lesions and its correlation with cerebral microbleeds in the elderly with lacunar infarction [J]. Medicine (Baltimore), 2020, 99(4): e18865.
20
Liu JY, Zhou YJ, Zhai FF, et al. Cerebral microbleeds are associated with loss of white matter integrity [J]. AJNR Am J Neuroradiol, 2020, 41(8): 1397-1404.
21
Wang PN, Chou KH, Peng LN, et al. Strictly lobar cerebral microbleeds are associated with increased white matter volume [J]. Transl Stroke Res, 2020, 11(1): 29-38.
22
Ballerini L, Booth T, Valdés Hernández MDC, et al. Computational quantification of brain perivascular space morphologies: Associations with vascular risk factors and white matter hyperintensities. A study in the Lothian Birth Cohort 1936 [J]. Neuroimage Clin, 2020, 25: 102120.
23
Bouvy WH, van Veluw SJ, Kuijf HJ. Microbleeds colocalize with enlarged juxtacortical perivascular spaces in amnestic mild cognitive impairment and early Alzheimer's disease: a 7 Tesla MRI study [J]. J Cereb Blood Flow Metab, 2020, 40(4): 739-746.
24
Duering M, Righart R, Csanadi E, et al. Incident subcortical infarcts induce focal thinning in connected cortical regions [J]. Neurology, 2012, 79(20): 2025-2028.
25
Lambert C, Benjamin P, Zeestraten E, et al. Longitudinal patterns of leukoaraiosis and brain atrophy in symptomatic small vessel disease [J]. Brain, 2016, 139(Pt 4): 1136-1151.
26
Ye S, Dong S, Tan J, et al. White-matter hyperintensities and lacunar infarcts are associated with an increased risk of Alzheimer's disease in the elderly in China [J]. J Clin Neurol, 2019, 15(1): 46-53.
27
Jokinen H, Lipsanen J, Schmidt R, et al. Brain atrophy accelerates cognitive decline in cerebral small vessel disease: the LADIS study [J]. Neurology, 2012, 78(22): 1785-1792.
28
Gyanwali B, Shaik MA, Venketasubramanian N, et al. Mixed-location cerebral microbleeds: an imaging biomarker for cerebrovascular pathology in cognitive impairment and dementia in a memory clinic population [J]. J Alzheimers Dis, 2019, 71(4): 1309-1320.
29
董艺, 李袁婧, 王永祥, 等. 脑小血管病与认知功能障碍 [J]. 中华行为医学与脑科学杂志, 2018, 27(8): 684-687.
30
谢鸿阳. 脑微出血对认知功能的影响及作用机制 [J]. 中风与神经疾病杂志, 2020, 37(6): 505-508.
31
夏禹. 脑微梗死与认知障碍相关性的研究进展 [J/OL]. 中华脑血管病杂志(电子版), 2020, 14(6): 363-365.
32
Yatawara C, Guevarra AC, Ng KP, et al. The role of cerebral microbleeds in the incidence of post-stroke dementia [J]. J Neurol Sci, 2020, 412: 116736.
33
Jiang Y, Wang Y, Yuan Z, et al. Total cerebral small vessel disease burden is related to worse performance on the mini-mental state examination and incident dementia: a prospective 5-year follow-up [J]. J Alzheimers Dis, 2019, 69(1): 253-262.
34
Li P, Wang Y, Jiang Y, et al. Cerebral small vessel disease is associated with gait disturbance among community-dwelling elderly individuals: the Taizhou imaging study [J]. Aging (Albany NY), 2020, 12(3): 2814-2824.
35
Loos CM, McHutchison C, Cvoro V, et al. The relation between total cerebral small vessel disease burden and gait impairment in patients with minor stroke [J]. Int J Stroke, 2018, 13(5): 518-524.
36
Liang Y, Chen YK, Mok VC, et al. Cerebral small vessel disease burden is associated with poststroke depressive symptoms: a 15-month1 prospective study [J]. Front Aging Neurosci, 2018, 10: 46.
37
Goldstein ED, Badi MK, Hasan TF, et al. Cerebral small vessel disease burden and all-cause mortality: Mayo Clinic Florida Familial Cerebrovascular Diseases Registry [J]. J Stroke Cerebrovasc Dis, 2019, 28(12): 104285.
[1] 常文轩, 王婷, 刘伟, 蓝天琦, 彭静, 汪诗瑶, 张晓鹏, 冯晨, 宫雪梅, 朱敏. 脑小血管病所致执行障碍的研究进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 179-182.
[2] 丁文华, 王育伟, 邱景景, 杨琼, 耿玉荣. 脑小血管病影像学标志物与运动障碍研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 429-434.
[3] 白明悦, 杨淑娜, 胡红梅, 胡文立. 透析患者脑小血管病患病情况的研究现状及其机制探讨[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 505-509.
[4] 晏美娟, 邵礼晖. 高水平脂蛋白(a)与无“三高”老年人群小动脉硬化型脑小血管病的相关性研究[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 458-463.
[5] 刘琳, 张奇山, 廖蔓倩, 陈余榕, 李倍, 何玉成, 唐圣桃. HTRA1相关常染色体显性脑小血管病家系报告并文献复习[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 379-385.
[6] 王道合, 施媛媛. 8-iso-PGF2α及P选择素在评估脑小血管病患者认知功能中的价值[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 364-368.
[7] 胡红梅, 胡文立. 脑小血管病总负担评估量表的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 145-149.
[8] 李卓然, 胡文立. 内皮功能、炎症、神经系统退行性疾病的生物标志物与小动脉硬化型CSVD的关联[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 57-60.
[9] 张兴文, 侯磊, 冉晔, 田成林. 急性多发性缺血性脑小血管病10例临床分析[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 22-25.
[10] 刘欣, 王丽娟, 刘荧, 王爽, 徐绍红, 李小刚. 缺血性脑卒中后不同程度认知障碍危险因素及认知训练效果分析[J]. 中华脑血管病杂志(电子版), 2022, 16(05): 314-319.
[11] 祁林瑞, 曾嵘, 胡风云. 炎性及代谢指标与脑小血管病认知障碍的相关性[J]. 中华脑血管病杂志(电子版), 2022, 16(01): 32-37.
[12] 晏僖, 尚俊奎, 王凤羽, 秦晓明, 霍雪静, 刘锐杰, 邹金龙, 张杰文. 同型半胱氨酸及凝血-纤溶指标与脑小血管病的关系[J]. 中华脑血管病杂志(电子版), 2022, 16(01): 27-31.
[13] 胡红梅, 胡文立. 不同空间分布脑微出血的常见病因和影像学特征的研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(01): 8-11.
[14] 洪靖舒, 韩登阳, 郭向阳. 神经血管单元在脑小血管病中的研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(01): 48-52.
[15] 张蓉, 赵晨阳, 何志义. 不同影像学表现的脑小血管病所致认知障碍特点的研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(01): 44-47.
阅读次数
全文


摘要