切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (06) : 367 -372. doi: 10.11817/j.issn.1673-9248.2021.06.003

论著

衰老对大鼠脑出血后脑损伤的影响
李凤利1, 宋加兴1, 李琳玉1, 杨清武1,()   
  1. 1. 400037 重庆,陆军军医大学第二附属医院神经内科
  • 收稿日期:2020-12-18 出版日期:2021-12-01
  • 通信作者: 杨清武
  • 基金资助:
    国家杰出青年科学基金项目(81525008)

Effect of aging on brain injury in a rat model of cerebral hemorrhage

Fengli Li1, Jiaxing Song1, Linyu Li1, Qingwu Yang1,()   

  1. 1. Department of Neurology, Second Affiliated Hospital of the Army Medical University, Chongqing 400037, China
  • Received:2020-12-18 Published:2021-12-01
  • Corresponding author: Qingwu Yang
引用本文:

李凤利, 宋加兴, 李琳玉, 杨清武. 衰老对大鼠脑出血后脑损伤的影响[J]. 中华脑血管病杂志(电子版), 2021, 15(06): 367-372.

Fengli Li, Jiaxing Song, Linyu Li, Qingwu Yang. Effect of aging on brain injury in a rat model of cerebral hemorrhage[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2021, 15(06): 367-372.

目的

探讨不同年龄阶段脑出血后脑损伤的变化。

方法

取3月龄及22月龄SD大鼠,给予纹状体自体血注射构建脑出血模型,记录2组大鼠脑出血后7 d的生存率,脑出血第3天的神经功能损伤评分、脑含水量,并通过Nissl染色、TUNEL染色、Fluoro-Jade B染色检测脑出血后2组大鼠神经元损伤的差异。采用Kaplan-Meier生存分析生存率,并采用Log-rank(Mantel-Cox)检验比较2组的差异;采用独立样本t检验比较神经功能损伤评分、脑含水量及3种染色方法下神经元损伤的差异。

结果

22月龄脑出血大鼠的7 d生存率仅为20%,远低于3月龄组(80%),差异具有统计学意义(χ2=9.845,P=0.002);22月龄脑出血大鼠3 d的神经损伤评分为(15.00±0.43)分,显著高于3月龄脑出血大鼠[(10.58±0.51)分],差异具有统计学意义(t=6.611,P<0.001);22月龄脑出血大鼠3 d的脑含水量为[(85.10±0.60)]%,亦显著高于3月龄脑出血大鼠[(80.53±0.41)%],差异具有统计学意义(t=6.335,P<0.001);Nissl、TUNEL及Fluoro-Jade B染色均发现22月龄脑出血大鼠的神经元损伤和凋亡较3月龄组显著增多,差异均具有统计学意义(P均<0.01),提示22月龄大鼠脑出血神经元损伤更重。

结论

年龄的增大可加速脑出血所致的神经元损伤,导致神经功能恶化、水肿增多、耐受性下降。

Objectives

To compare the changes of brain injury after cerebral hemorrhage in different age stages in a rat model.

Methods

A model of cerebral hemorrhage was constructed using SD rats aged 3 months and 22 months with striatum autologous blood injection. The survival of 7 days after intracerebral hemorrhage was recorded and Kaplan-Meier survival analysis and Log-rank (Mantel-Cox) test were performed. The neurological deficient score and the content of brain edema were recorded on the third day of intracerebral hemorrhage. The difference of neuronal injury between the two groups was detected by Nissl, TUNEL and Fluoro-Jade B staining with Student's t-test for two groups' data comparison.

Results

7 days survival of 22-month-old rats with cerebral hemorrhage was 20%, which was significantly lower, than that of 3-month-old group (80%, χ2=9.845, P=0.002). Neurological deficient score of 22-month-old rats (mean±SD: 15.00±0.43) was higher than that of 3-month-old (10.58±0.5, t=6.611, P<0.001), and the brain water content of 22-month-old rats (85.10±0.60)% was higher than that of 3-month-old [(80.53±0.41)%, t=6.335, P<0.001]. Nissl, TUNEL and Fluoro-Jade B staining showed that the damage and apoptosis of neurons in 22-month-old cerebral hemorrhage rats increased significantly compared with 3-month-old group (P<0.01), suggesting that cerebral hemorrhage induced neural damage was more serious in 22-month-old.

Conclusion

The increase of age can accelerate the neuronal injury caused by cerebral hemorrhage, which leads to the deterioration of neural function, the increase of edema and the decrease of injury tolerance.

表1 实验大鼠体质量和血压数据比较(
xˉ
±s
表2 3月龄和22月龄大鼠脑出血模型成模后不同时间点的神经功能评分比较(分,
xˉ
±s
图1 不同月龄大鼠脑出血模型成模后7 d的Kaplan-Meier生存曲线
图2 不同月龄大鼠脑出血后第3天TUNEL染色结果。图a为脑出血后3 d,3月龄和22月龄大鼠出血侧纹状体及周边组织可见凋亡细胞(箭头所示)(n=5);图b显示3月龄和22月龄大鼠脑出血后3 d脑组织凋亡细胞数量比较结果,差异具有统计学意义(n=5,t=21.21,aP<0.01)
图3 不同月龄大鼠脑出血后3 d Nissl染色结果。图a示脑出血后3 d,3月龄和22月龄大鼠脑出血对侧纹状体及周边组织可见大量Nissl小体(箭头所示),脑出血侧纹状体及周边组织Nissl小体数量显著减少;图b示3月龄和22月龄大鼠脑出血后3 d出血侧脑组织Nissl染色结果差异具有统计学意义(n=5,t=13.55,aP<0.01),对侧脑组织Nissl染色结果差异无统计学意义
图4 不同月龄大鼠脑出血后3 d FJB染色结果。图a示脑出血后3 d,3月龄和22月龄大鼠出血侧纹状体及周边组织可见变形神经元(箭头所示);图b为3月龄和22月龄大鼠脑出血后3 d脑组织变性神经元数量比较结果,差异具有统计学意义(n=5,t=14.34,aP<0.01)
1
Tsai CF, Thomas B, Sudlow CL. Epidemiology of stroke and its subtypes in Chinese vs white populations: a systematic review [J]. Neurology, 2013, 81(3): 264-272.
2
Van Asch CJ, Luitse MJ, Rinkel GJ, et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis [J]. Lancet Neurol, 2010, 9(2): 167-176.
3
Liu M, Wu B, Wang W Z, et al. Stroke in China: epidemiology, prevention, and management strategies [J]. Lancet Neurol, 2007, 6(5): 456-464.
4
Jolink WM, Klijn CJ, Brouwers PJ, et al. Time trends in incidence, case fatality, and mortality of intracerebral hemorrhage [J]. Neurology, 2015, 85(15): 1318-1324.
5
Soo Y, Abrigo JM, Leung KT, et al. Risk of intracerebral haemorrhage in Chinese patients with atrial fibrillation on warfarin with cerebral microbleeds: the IPAAC-Warfarin study [J]. J Neurol Neurosurg Psychiatry, 2019, 90(4): 428-435.
6
Gong Y, Hua Y, Keep RF, et al. Intracerebral hemorrhage: effects of aging on brain edema and neurological deficits [J]. Stroke, 2004, 35(11): 2571-2575.
7
Wilkinson DA, Pandey AS, Thompson BG, et al. Injury mechanisms in acute intracerebral hemorrhage [J]. Neuropharmacology, 2018, 134(Pt B): 240-248.
8
Wan Y, Gao F, Ye F, et al. Effects of aging on hydrocephalus after intraventricular hemorrhage [J]. Fluids Barriers CNS, 2020, 17(1): 8.
9
Sumbria RK, Grigoryan MM, Vasilevko V, et al. Aging exacerbates development of cerebral microbleeds in a mouse model [J]. J Neuroinflammation, 2018, 15(1): 69.
10
Ni W, Okauchi M, Hatakeyama T, et al. Deferoxamine reduces intracerebral hemorrhage-induced white matter damage in aged rats [J]. Exp Neurol, 2015, 272: 128-134.
11
Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats [J]. Stroke, 2001, 32(4): 1005-1011.
12
Xiong XY, Liu L, Wang FX, et al. Toll-like receptor 4/MyD88-mediated signaling of hepcidin expression causing brain iron accumulation, oxidative injury, and cognitive impairment after intracerebral hemorrhage [J]. Circulation, 2016, 134(14): 1025-1038.
13
Wang FX, Yang XL, Ma YS, et al. TRIF contributes to epileptogenesis in temporal lobe epilepsy during TLR4 activation [J]. Brain Behav Immun, 2018, 67: 65-76.
14
Tsai CF, Jeng JS, Anderson N, et al. Comparisons of risk factors for intracerebral hemorrhage versus ischemic stroke in chinese patients [J]. Neuroepidemiology, 2017, 48(1-2): 72-78.
15
An SJ, Kim TJ, Yoon BW. Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: an update [J]. J Stroke, 2017, 19(1): 3-10.
16
Van Beijnum J, Lovelock CE, Cordonnier C, et al. Outcome after spontaneous and arteriovenous malformation-related intracerebral haemorrhage: population-based studies [J]. Brain, 2009, 132(Pt 2): 537-543.
17
郑嘉荣, 邓剑玲. 实验动物脑出血模型的研究进展 [J]. 医学综述, 2020, 26(5): 960-964.
18
Yuan JJ, Zhang Q, Gong CX, et al. Young plasma ameliorates aging-related acute brain injury after intracerebral hemorrhage [J]. Biosci Rep, 2019, 39(5): BSR20190537.
19
Lee JC, Cho GS, Choi BO, et al. Intracerebral hemorrhage-induced brain injury is aggravated in senescence-accelerated prone mice [J]. Stroke, 2006, 37(1): 216-222.
20
Gong Y, Xi GH, Keep RF, et al. Aging enhances intracerebral hemorrhage-induced brain injury in rats [J]. Acta Neurochir Suppl, 2005, 95: 425-427.
21
Zeng Z, Gong X, Hu Z. L-3-n-butylphthalide attenuates inflammation response and brain edema in rat intracerebral hemorrhage model [J]. Aging (Albany NY), 2020, 12(12): 11768-11780.
22
Dai S, Hua Y, Keep RF, et al. Minocycline attenuates brain injury and iron overload after intracerebral hemorrhage in aged female rats [J]. Neurobiol Dis, 2019, 126: 76-84.
23
王杰, 陈蔚翔, 夏敏, 等. 年龄对小鼠脑出血预后的影响 [J]. 中华神经外科杂志, 2018, 5(34): 524-529.
24
Wasserman JK, Yang H, Schlichter LC. Glial responses, neuron death and lesion resolution after intracerebral hemorrhage in young vs. aged rats [J]. Eur J Neurosci, 2008, 28(7): 1316-1328.
25
Lively S, Schlichter LC. SC1/hevin identifies early white matter injury after ischemia and intracerebral hemorrhage in young and aged rats [J]. J Neuropathol Exp Neurol, 2012, 71(6): 480-493.
26
Anqi X, Ruiqi C, Yanming R, et al. Neuroprotective potential of GDF11 in experimental intracerebral hemorrhage in elderly rats [J]. J Clin Neurosci, 2019, 63: 182-188.
[1] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[2] 李文琳, 羊玲, 邢凯慧, 陈彩华, 钟丽花, 张娅琴, 张薇. 脐动脉血血气分析联合振幅整合脑电图对新生儿窒息脑损伤的早期诊断价值分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 550-558.
[3] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[4] 钱晓英, 吴新, 徐婷婷. 颅脑损伤并发呼吸衰竭患者早期机械通气的效果分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 526-528.
[5] 刘玲, 肖颖, 王蓉. 严重创伤并发肺部感染死亡病例分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 581-583.
[6] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[7] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[8] 李飞翔, 段虎斌, 李晋虎, 吴昊, 王永红, 范益民. 急性颅脑损伤继发下肢静脉血栓的相关危险因素分析及预测模型构建[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 277-282.
[9] 潘立, 谢理政, 程宏伟, 茆翔. 创伤性颅脑损伤后垂体功能减退[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 308-312.
[10] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[11] 运陌, 李茂芳, 王浩, 刘东远. 微创穿刺引流联合吡拉西坦、乌拉地尔治疗基底节区高血压性脑出血的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 278-285.
[12] 刘政委, 仪立志, 尹夕龙, 孔文龙, 纠智松, 张文源. 锥颅血肿外引流与神经内镜手术治疗老年基底节区高血压性脑出血的疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 299-303.
[13] 陈显金, 吴芹芹, 何长春, 张庆华. 利用多模态医学数据和机器学习构建脑出血预后预测模型的研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 193-198.
[14] 谭可, 李锦平, 彭玉涛, 吴文汧, 杨子文, 汪阳, 陶立波, 刘畅. 机器人辅助立体定向血肿引流术治疗自发性脑出血疗效及卫生经济学评价[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 205-214.
[15] 赵暾, 徐霁华, 何有娣, 鲁明. 误诊为脑梗死且险些溶栓的急性自发微量脑出血一例[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 369-372.
阅读次数
全文


摘要