1 |
Jia Q, Zhao X, Wang C, et al. Diabetes and poor outcomes within 6 months after acute ischemic stroke: the China National Stroke Registry [J]. Stroke, 2011, 42(10): 2758-2762.
|
2 |
Liu L, Wang D, Wong KS, et al. Stroke and stroke care in China: huge burden, significant workload, and a national priority [J]. Stroke, 2011, 42(12): 3651-3654.
|
3 |
Wong LK. Global burden of intracranial atherosclerosis [J]. Int J Stroke, 2006, 1(3): 158-159.
|
4 |
Gorelick PB, Wong KS, Bae HJ, et al. Large artery intracranial occlusive disease: a large worldwide burden but a relatively neglected frontier [J]. Stroke, 2008, 39(8): 2396-2399.
|
5 |
Clarke R, Du H, Kurmi O, et al. Burden of carotid artery atherosclerosis in Chinese adults: Implications for future risk of cardiovascular diseases [J]. Eur J Prev Cardiol, 2017, 24(6): 647-656.
|
6 |
Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I [J]. Circulation, 2003, 108(14): 1664-1672.
|
7 |
吴平生, 张远慧, 许乙凯, 等. 易损斑块及易损患者的新定义及危险分层 [J]. 中华心血管病杂志, 2014, 32(3): 283-285.
|
8 |
中华医学会外科学分会血管外科学组. 颈动脉狭窄诊治指南 [J/CD]. 中国血管外科杂志(电子版), 2017, 9(3): 169-175.
|
9 |
Mandell DM, Mossa-Basha M, Qiao Y, et al. Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology [J]. AJNR Am J Neuroradiol, 2017, 38(2): 218-229.
|
10 |
Yuan C, Mitsumori LM, Ferguson MS, et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques [J]. Circulation, 2001, 104(17): 2051-2056.
|
11 |
Wasserman BA, Smith WI, Trout HH, et al. Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging-initial results [J]. Radiology, 2002, 223(2): 566-573.
|
12 |
Liang J, Liu Y, Xu X, et al. Cerebral perforating artery disease: characteristics on high-resolution magnetic resonance imaging [J]. Clin Neuroradiol, 2019, 29(3): 533-541.
|
13 |
Klein IF, Lavallee PC, Mazighi M, et al. Basilar artery atherosclerotic plaques in paramedian and lacunar pontine infarctions: a high-resolution MRI study [J]. Stroke, 2010, 41(7): 1405-1409.
|
14 |
Chung JW, Kim BJ, Sohn CH, et al. Branch atheromatous plaque: a major cause of lacunar infarction (high-resolution MRI study) [J]. Cerebrovasc Dis Extra, 2012, 2(1): 36-44.
|
15 |
Qiao Y, Etesami M, Astor BC, et al. Carotid plaque neovascularization and hemorrhage detected by MR imaging are associated with recent cerebrovascular ischemic events [J]. AJNR Am J Neuroradiol, 2012, 33(4): 755-760.
|
16 |
Qiao Y, Zeiler SR, Mirbagheri S, et al. Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images [J]. Radiology, 2014, 271(2): 534-542.
|
17 |
Wang EL, Shao S, Li S, et al. A high-resolution MRI study of the relationship between plaque enhancement and ischemic stroke events in patients with intracranial atherosclerotic stenosis [J]. Front Neurol, 2019, 9: 1154.
|
18 |
Ma X, Zhao Q, Zhao L, et al. In vivo MR imaging of plaque disruption and thrombus formation in an atherosclerotic rabbit model [J]. Int J Cardiovasc Imaging, 2012, 28(3): 577-586.
|
19 |
Choi YJ, Jung SC, Lee DH. Vessel wall imaging of the intracranial and cervical carotid arteries [J]. J Stroke, 2015, 17(3): 238-255.
|
20 |
彭雯佳, 陆建平. 动脉粥样硬化管壁的多对比高分辨率MRI研究进展 [J]. 中华放射学杂志, 2015, 49(8): 637-640.
|
21 |
Yuan C, Petty C, O'Brien KD, et al. In vitro and in situ magnetic resonance imaging signal features of atherosclerotic plaque-associated lipids [J]. Arterioscler Thromb Vasc Biol, 1997, 17(8): 1496-1503.
|
22 |
Toussaint JF, LaMuraglia GM, Southern JF, et al. Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo [J]. Circulation, 1996, 94(5): 932-938.
|
23 |
Markl M, Frydrychowicz A, Kozerke S, et al. 4D flow MRI [J]. J Magn Reson Imaging, 2012, 36(5): 1015-1036.
|
24 |
Wu C, Schnell S, Vakil P, et al. In vivo assessment of the impact of regional intracranial atherosclerotic lesions on brain arterial 3D hemodynamics [J]. AJNR Am J Neuroradiol, 2017, 38(3): 515-522.
|
25 |
Markl M, Wegent F, Zech T, et al. In vivo wall shear stress distribution in the carotid artery: effect of bifurcation geometry, internal carotid artery stenosis, and recanalization therapy [J]. Circ Cardiovasc Imaging, 2010, 3(6): 647-655.
|
26 |
Wehrum T, Gunther F, Kams M, et al. Quantification of aortic stiffness in stroke patients using 4D flow MRI in comparison with transesophageal echocardiography [J]. Int J Cardiovas Imaging, 2018, 34(10): 1629-1636.
|
27 |
Markl M, Brendecke SM, Simon J, et al. Co-registration of the distribution of wall shear stress and 140 complex plaques of the aorta [J]. Magn Reson Imaging, 2013, 31(7): 1156-1162.
|
28 |
Zhang G, Wang Z, Zhang S, et al. Age and anatomical location related hemodynamic changes assessed by 4D flow MRI in the carotid arteries of healthy adults [J]. Eur J Radiol, 2020, 128: 109035.
|
29 |
Eshtehardi P, Teng Z. Protective or destructive: high wall shear stress and atherosclerosis [J]. Atherosclerosis, 2016, 251:501-503.
|
30 |
Eshtehardi P, Brown AJ, Bhargava A, et al. High wall shear stress and high-risk plaque: an emerging concept [J]. Int J Cardiovasc Imaging, 2017, 33(7): 1089-1099.
|
31 |
赵扬, 王敬时, 王伟, 等. 基于压缩感知的磁共振血管快速成像的研究进展 [J]. 医疗卫生装备, 2016, 37(3): 104-109.
|
32 |
Cukur T, Lustig M, Nishimura DG. Improving non-contrast-enhanced steady-state free precession angiography with compressed sensing [J]. Magn Reson Med, 2009, 61(5): 1122-1131.
|
33 |
Li B, Li H, Dong L, et al. Fast carotid artery MR angiography with compressed sensing based three-dimensional time-of-flight sequence [J]. Magn Reson Imaging, 2017, 43: 129-135.
|
34 |
Lin ZY, Zhang XD, Guo L, et al. Clinical feasibility study of 3D intracranial magnetic resonance angiography using compressed sensing [J]. J Magn Reson Imaging, 2019, 50(6): 1843-1851.
|
35 |
Lu SS, Qi M, Zhang X, et al. Clinical evaluation of highly accelerated compressed sensing time-of-flight MR angiography for intracranial arterial stenosis [J]. AJNR Am J Neuroradiol, 2018, 39(10): 1833-1838.
|
36 |
Fujiwara Y, Muranaka Y. Improvement in visualization of carotid artery uniformity using silent magnetic resonance angiography [J]. Radiol Phys Technol, 2017, 10(1): 113-120.
|
37 |
Tanoue S, Uchiyama Y, Hirohata M, et al. Follow-up non-contrast MRA after treatment of intracranial aneurysms using microcoils with prominent metallic artifact: a comparative study of TOF-MRA and silent MRA [J]. Jpn J Radiol, 2020, 38(9): 853-859.
|
38 |
Ryu KH, Baek HJ, Moon JI, et al. Usefulness of noncontrast-enhanced silent magnetic resonance angiography (MRA) for treated intracranial aneurysm follow-up in comparison with time-of-flight MRA [J]. Neurosurgery, 2020, 87(2): 220-228.
|
39 |
Tomura N, Saginoya T, Kokubun M, et al. Comparison of time-of-flight-magnetic resonance angiography from silent scan magnetic resonance angiography in depiction of arteriovenous malformation of the brain [J]. J Comput Assist Tomogr, 2019, 43(6): 943-947.
|
40 |
Tomura N, Kokubun M, Horiuchi K, et al. Comparison of TOF-MRA and silent scan-MRA in depicting cerebral arteries in patients with Moyamoya disease [J]. Acta Radiol, 2019, 60(10): 1321-1328.
|