1 |
Wang W, Jiang B, Sun H, et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults [J]. Circulation, 2017, 135(8): 759-771.
|
2 |
Zhao X, Li R, Hippe DS, et al. Chinese Atherosclerosis Risk Evaluation (CARE Ⅱ) study: a novel cross-sectional, multicentre study of the prevalence of high-risk atherosclerotic carotid plaque in Chinese patients with ischaemic cerebrovascular events-design and rationale [J]. Stroke Vasc Neurol, 2017, 2(1): 15-20.
|
3 |
Zhu C, Tian X, Degnan AJ, et al. Clinical significance of intraplaque hemorrhage in low- and high-grade basilar artery stenosis on high-resolution MRI [J]. AJNR Amer J Neuroradiol, 2018, 39(7): 1286-1292.
|
4 |
Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part Ⅰ [J]. Circulation, 2003, 108(14): 1664-1672.
|
5 |
Michel JB, Virmani R, Arbustini E, et al. Intraplaque haemorrhages as the trigger of plaque vulnerability [J]. Eur Heart J, 2011, 32(16): 1977-1985.
|
6 |
Sluimer JC, Daemen MJ. Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis [J]. J Pathol, 2009, 218(1): 7-29.
|
7 |
Saba L, Lanzino G, Lucatelli P, et al. Carotid plaque CTA analysis in symptomatic subjects with bilateral intraparenchymal hemorrhage: a preliminary analysis [J]. AJNR Amer J Neuroradiol, 2019, 40(9): 1538-1545.
|
8 |
Larson AS, Brinjikji W, Savastano L, et al. Carotid intraplaque hemorrhage and stenosis: at what stage of plaque progression does intraplaque hemorrhage occur, and when is it most likely to be associated with symptoms? [J]. AJNR Amer J Neuroradiol, 2021, 42(7): 1285-1290.
|
9 |
Schindler A, Schinner R, Altaf N, et al. Prediction of stroke risk by detection of hemorrhage in carotid plaques: meta-analysis of individual patient data [J]. JACC Cardiovasc Imaging, 2020, 13(2 Pt 1): 395-406.
|
10 |
Brinjikji W, Huston J, Rabinstein AA, et al. Contemporary carotid imaging: from degree of stenosis to plaque vulnerability [J]. J Neurosurg, 2016, 124(1): 27-42.
|
11 |
Ota H, Yarnykh VL, Ferguson MS, et al. Carotid intraplaque hemorrhage imaging at 3.0-T MR imaging: comparison of the diagnostic performance of three T1-weighted sequences [J]. Radiology, 2010, 254(2): 551-563.
|
12 |
Liu J, Balu N, Hippe DS, et al. Semi-automatic carotid intraplaque hemorrhage detection and quantification on Magnetization-Prepared Rapid Acquisition Gradient-Echo (MP-RAGE) with optimized threshold selection [J]. J Cardiovasc Magn Reson, 2016, 18(1): 41.
|
13 |
Motoyama R, Saito K, Tonomura S, et al. Utility of complementary magnetic resonance plaque imaging and contrast-enhanced ultrasound to detect carotid vulnerable plaques [J]. J Am Heart Assoc, 2019, 8(8): e011302.
|
14 |
Xiong Y, Zhang Z, He L, et al. Intracranial simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) MRA: Analyzation, optimization, and extension for dynamic MRA [J]. Magn Reson Med, 2019, 82(5): 1646-1659.
|
15 |
Li D, Zhao H, Chen X, et al. Identification of intraplaque haemorrhage in carotid artery by simultaneous non-contrast angiography and intraPlaque haemorrhage (SNAP) imaging: a magnetic resonance vessel wall imaging study [J]. Eur Radiol, 2018, 28(4): 1681-1686.
|
16 |
Li D, Qiao H, Han Y, et al. Histological validation of simultaneous non-contrast angiography and intraplaque hemorrhage imaging (SNAP) for characterizing carotid intraplaque hemorrhage [J]. Eur Radiol, 2021, 31(5): 3106-3115.
|
17 |
Liu J, Sun J, Balu N, et al. Semiautomatic carotid intraplaque hemorrhage volume measurement using 3D carotid MRI [J]. J Magn Reson Imaging, 2019, 50(4): 1055-1062.
|
18 |
Cao X, Tang Y, Pan L, et al. Assessment of carotid atherosclerotic plaque using 3D motion-sensitized driven-equilibrium prepared rapid gradient echo: a comparative study [J]. Quant Imaging Med Surg, 2021, 11(6): 2744-2755.
|
19 |
Wei H, Zhang M, Li Y, et al. Evaluation of 3D multi-contrast carotid vessel wall MRI: a comparative study [J]. Quant Imaging Med Surg, 2020, 10(1): 269-282.
|
20 |
Qiao H, Li D, Cao J, et al. Quantitative evaluation of carotid atherosclerotic vulnerable plaques using in vivo T1 mapping cardiovascular magnetic resonance: validation by histology [J]. J Cardiovasc Magn Reson, 2020, 22(1): 38.
|
21 |
Azuma M, Maekawa K, Yamashita A, et al. Characterization of carotid plaque components by quantitative susceptibility mapping [J]. AJNR Am J Neuroradiol, 2020, 41(2): 310-317.
|
22 |
Ikebe Y, Ishimaru H, Imai H, et al. Quantitative susceptibility mapping for carotid atherosclerotic plaques: a pilot study [J]. Magn Reson Med Sci, 2020, 19(2): 135-140.
|
23 |
Sun J, Underhill HR, Hippe DS, Et al. Sustained acceleration in carotid atherosclerotic plaque progression with intraplaque hemorrhage: a long-term time course study [J]. JACC Cardiovasc Imaging, 2012, 5(8): 798-804.
|
24 |
Wang X, Sun J, Zhao X, et al. Ipsilateral plaques display higher T1 signals than contralateral plaques in recently symptomatic patients with bilateral carotid intraplaque hemorrhage [J]. Atherosclerosis, 2017, 257: 78-85.
|
25 |
Sheahan M, Ma X, Paik D, et al. Atherosclerotic plaque tissue: noninvasive quantitative assessment of characteristics with software-aided measurements from conventional CT angiography [J]. Radiology, 2018, 286(2): 622-631.
|
26 |
Saba L, Francone M, Bassareo PP, et al. CT attenuation analysis of carotid intraplaque hemorrhage [J]. AJNR Am J Neuroradiol, 2018, 39(1): 131-137.
|
27 |
Margaritis M, Sanna F, Lazaros G, Et Al. Predictive value of telomere length on outcome following acute myocardial infarction: evidence for contrasting effects of vascular vs. blood oxidative stress [J]. Eur Heart J, 2017, 38(41): 3094-3104.
|
28 |
CHistiakov DA, Orekhov AN, Bobryshev YV. Contribution of neovascularization and intraplaque haemorrhage to atherosclerotic plaque progression and instability [J]. Acta Physiol (Oxf), 2015, 213(3): 539-553.
|
29 |
Antoniades C, Antonopoulos AS, Deanfield J. Imaging residual inflammatory cardiovascular risk [J]. Eur Heart J, 2020, 41(6): 748-758.
|
30 |
Zhang S, Gu H, Yu X, et al. Association between carotid artery perivascular fat density and intraplaque hemorrhage [J]. Front Cardiovasc Med, 2021, 8: 735794.
|
31 |
Dilba K, Van Dam-Nolen DHK, Van Dijk AC, et al. Plaque composition as a predictor of plaque ulceration in carotid artery atherosclerosis: the plaque at RISK study [J]. AJNR Am J Neuroradiol, 2021, 42(1): 144-151.
|
32 |
Trandafir C, Laurent-Chabalier S, Cosma C, et al. Association of symptomatic atherosclerotic carotid arteries with plaque areas showing low densities on computed tomographic angiography [J]. Eur J Neurol, 2022, 29(4): 1056-1061.
|
33 |
Vesey AT, Jenkins WSA, Irkle A, et al. 18F-Fluoride and 18F-Fluorodeoxyglucose positron emission tomography after transient ischemic attack or minor ischemic stroke: case-control study [J]. Circ Cardiovasc Imaging, 2017, 10(3): e004976.
|
34 |
Kaczynski J, Sellers S, Seidman MA, et al. 18F-NaF PET/MRI for detection of carotid atheroma in acute neurovascular syndrome [J]. Radiology, 2022, 305(1): 137-148.
|
35 |
Spanos K, Tzorbatzoglou I, Lazari P, et al. Carotid artery plaque echomorphology and its association with histopathologic characteristics [J]. J Vasc Surg, 2018, 68(6): 1772-1780.
|
36 |
Czernuszewicz TJ, Homeister JW, Caughey MC, et al. Performance of acoustic radiation force impulse ultrasound imaging for carotid plaque characterization with histologic validation [J]. J Vasc Surg, 2017, 66(6): 1749-1757.e3.
|