1 |
Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st century:a statement for healthcare professionals from the American Heart Association/American Stroke Association [J]. Stroke, 2013, 44(7): 2064-2089.
|
2 |
陈洁, 邓远飞, 张丽芳. 镜像治疗与脑卒中后手功能康复 [J/CD]. 中华脑科疾病与康复杂志(电子版), 2019, 9(5): 311-314.
|
3 |
王碧茹, 周甜甜, 廖维靖. 虚拟现实技术在脑卒中患者康复治疗中的应用进展 [J]. 中国康复, 2021, 36(12): 765-768.
|
4 |
Mekbib DB, Zhao Z, Wang J, et al. Proactive motor functional recovery following immersive virtual reality-based limb mirroring therapy in patients with subacute stroke [J]. Neurotherapeutics, 2020, 17(4): 1919-1930.
|
5 |
Rizzolatti G, Fadiga L, Gallese V, et al. Premotor cortex and the recognition of motor actions [J]. Brain Res Cogn Brain Res, 1996, 3(2): 131-141.
|
6 |
Mekbib DB, Debeli DK, Zhang L, et al. A novel fully immersive virtual reality environment for upper extremity rehabilitation in patients with stroke [J]. Ann N Y Acad Sci, 2021, 1493(1): 75-89.
|
7 |
Zhang B, Li D, Liu Y, et al. Virtual reality for limb motor function, balance, gait, cognition and daily function of stroke patients: a systematic review and meta-analysis [J]. J Adv Nurs, 2021, 77(8): 3255-3273.
|
8 |
Peng QC, Yin L, Cao Y. Effectiveness of virtual reality in the rehabilitation of motor function of patients with subacute stroke: a metaanalysis [J]. Front Neurol, 2021, 12: 639535.
|
9 |
Liao YY, Tseng HY, Lin YJ, et al. Using virtual reality-based training to improve cognitive function, instrumental activities of daily living and neural efficiency in older adults with mild cognitive impairment [J]. Eur J Phys Rehabil Med, 2020, 56(1): 47-57.
|
10 |
Dehn LB, Piefke M, Toepper M, et al. Cognitive training in an everyday-like virtual reality enhances visual-spatial memory capacities in stroke survivors with visual field defects [J]. Top Stroke Rehabil, 2020, 27(6): 442-452.
|
11 |
Thieme H, Morkisch N, Mehrholz J, et al. Mirror therapy for improving motor function after stroke [J]. Cochrane Database Syst Rev, 2018, 7(7): CD008449.
|
12 |
Gandhi DB, Sterba A, Khatter H, et al. Mirror therapy in stroke rehabilitation: current perspectives [J]. Ther Clin Risk Manag, 2020, 16: 75-85.
|
13 |
Deconinck FJ, Smorenburg AR, Benham A, et al. Reflections on mirror therapy: a systematic review of the effect of mirror visual feedback on the brain [J]. Neurorehabil Neural Repair, 2015, 29(4): 349-361.
|
14 |
Zeng W, Guo YH, Wu GF, et al. Mirror therapy for motor function of the upper extremity in patients with stroke: a meta-analysis [J]. J Rehabil Med, 2018, 50(1): 8-15.
|
15 |
Louie DR, Lim SB, Eng JJ. The efficacy of lower extremity mirror therapy for improving balance, gait, and motor function poststroke: a systematic review and meta-analysis [J]. J Stroke Cerebrovasc Dis, 2019, 28(1): 107-120.
|
16 |
Chang WH, Kim YH. Robot-assisted therapy in stroke rehabilitation [J]. J Stroke, 2013, 15(3): 174-181.
|
17 |
程雪, 白定群, 彭晓华. 下肢外骨骼康复机器人在脑卒中康复中的应用和研究进展 [J].中国康复医学杂志, 2021, 36(10): 1327-1332.
|
18 |
Zhang X, Yue Z, Wang J, et al. Robotics in lower-limb rehabilitation after stroke [J]. Behav Neurol, 2017, 2017: 3731802.
|
19 |
Kim HY, Shin JH, Yang SP, et al. Robot-assisted gait training for balance and lower extremity function in patients with infratentorial stroke: a single-blinded randomized controlled trial [J]. J Neuroeng Rehabil, 2019, 16(1): 99.
|
20 |
曹振东, 杨彩霞, 褚延利. 上肢康复机器人治疗脑卒中患者上肢功能的临床疗效研究 [J]. 中国疗养医学, 2022, 31(1): 68-70.
|
21 |
Calabrò RS, Naro A, Russo M, et al. Shaping neuroplasticity by using powered exoskeletons in patients with stroke:a randomized clinical trial [J]. J Neuroeng Rehabil, 2018, 15(1): 35.
|
22 |
吴佼佼, 杜巨豹, 张晔, 等. 脑损伤后意识障碍患者治疗方法的研究进展 [J]. 中国康复医学杂志, 2019, 34(9): 1125-1130.
|
23 |
王艺霏, 何佳佳, 田浩. 非侵入性脑刺激在脑卒中康复中的研究进展 [J]. 中国康复, 2021, 36(11): 684-689.
|
24 |
李江. 不同频率rTMS对脑梗死患者上肢运动功能及痉挛程度的影响[D]. 山东大学, 2017.
|
25 |
Long H, Wang H, Zhao C, et al. Effects of combining high- and low-frequency repetitive transcranial magnetic stimulation on upper limb hemiparesis in the early phase of stroke [J]. Restor Neurol Neurosci, 2018, 36(1): 21-30.
|
26 |
Vitório R, Stuart S, Charvet LE, et al. Introducing the thematic series on transcranial direct current stimulation (tDCS) for motor rehabilitation: on the way to optimal clinical use [J]. J Neuroeng Rehabil, 2019, 16(1): 34.
|
27 |
Sunwoo H, Kim YH, Chang WH, et al. Effects of dual transcranial direct current stimulation on post-stroke unilateral visuospatial neglect [J]. Neurosci Lett, 2013, 554: 94-98.
|
28 |
Fridriksson J, Rorden C, Elm J, et al. Transcranial direct current stimulation vs sham stimulation to treat aphasia after stroke: a randomized clinical trial [J]. JAMA Neurol, 2018, 75(12): 1470-1476.
|
29 |
van der Meij A, Wermer MJH. Vagus nerve stimulation: a potential new treatment for ischaemic stroke [J]. Lancet, 2021, 397(10284): 1520-1521.
|
30 |
Morrison RA, Hays SA, Kilgard MP. Vagus nerve stimulation as a potential adjuvant to rehabilitation for post-stroke motor speech disorders [J]. Front Neurosci, 2021, 15: 715928.
|
31 |
Hulsey DR, Shedd CM, Sarker SF, et al. Norepinephrine and serotonin are required for vagus nerve stimulation directed cortical plasticity [J]. Exp Neurol, 2019, 320: 112975.
|
32 |
Zhao JJ, Wang ZH, Zhang YJ, et al. The mechanisms through which auricular vagus nerve stimulation protects against cerebral ischemia/reperfusion injury [J]. Neural Regen Res, 2022, 17(3): 594-600.
|
33 |
Dawson J, Liu CY, Francisco GE, et al. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial [J]. Lancet, 2021, 397(10284): 1545-1553.
|
34 |
Kimberley TJ, Pierce D, Prudente CN, et al. Vagus nerve stimulation paired with upper limb rehabilitation after chronic stroke: a blinded randomized pilot study [J]. Stroke, 2018, 49(49): 2789-2792.
|
35 |
Kilgard MP, Rennaker RL, Alexander J, et al. Vagus nerve stimulation paired with tactile training improved sensory function in a chronic stroke patient [J]. Neuro Rehabilitation, 2018, 42(2): 159-165.
|