1 |
Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications [J]. Lancet Neurol, 2019, 18(7): 684-696.
|
2 |
胡文立, 杨磊, 李譞婷, 等. 中国脑小血管病诊治专家共识2021 [J]. 中国卒中杂志, 2021, 16(7): 716-726.
|
3 |
Auriel E, Csiba L, Berenyi E, et al. Leukoaraiosis is associated with arterial wall thickness: a quantitative analysis [J]. Neuropathology, 2012, 32(3): 227-233.
|
4 |
Munoz DG. Leukoaraiosis and ischemia: beyond the myth [J]. Stroke, 2006, 37(6): 1348-1349.
|
5 |
Zhang CE, Wong SM, van de Haar HJ, et al. Blood-brain barrier leakage is more widespread in patients with cerebral small vessel disease [J]. Neurology, 2017, 88(5): 426-432.
|
6 |
Nezu T, Hosomi N, Aoki S, et al. Endothelial dysfunction is associated with the severity of cerebral small vessel disease [J]. Hypertens Res, 2015, 38(4): 291-297.
|
7 |
De Guio F, Vignaud A, Ropele S, et al. Loss of venous integrity in cerebral small vessel disease: a 7-T MRI study in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) [J]. Stroke, 2014, 45(7): 2124-2126.
|
8 |
Charidimou A, Pantoni L, Love S. The concept of sporadic cerebral small vessel disease: A road map on key definitions and current concepts [J]. Int J Stroke, 2016, 11(1): 6-18.
|
9 |
O'Sullivan M, Lythgoe DJ, Pereira AC, et al. Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis [J]. Neurology, 2002, 59(3): 321-326.
|
10 |
Hainsworth AH, Fisher MJ. A dysfunctional blood-brain barrier and cerebral small vessel disease [J]. Neurology, 2017, 88(5): 420-421.
|
11 |
Li Y, Li M, Zhang X, et al. Higher blood-brain barrier permeability is associated with higher white matter hyperintensities burden [J]. J Neurol, 2017, 264(7): 1474-1481.
|
12 |
Wiseman S, Marlborough F, Doubal F, et al. Blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus non-lacunar stroke and non-stroke: systematic review and meta-analysis [J]. Cerebrovasc Dis, 2014, 37(1): 64-75.
|
13 |
Kloppenborg RP, Geerlings MI, Visseren FL, et al. Homocysteine and progression of generalized small-vessel disease: the SMART-MR Study [J]. Neurology, 2014, 82(9): 777-783.
|
14 |
Simpson JE, Fernando MS, Clark L, et al. White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses [J]. Neuropathol Appl Neurobiol, 2007, 33(4): 410-419.
|
15 |
Pantoni L, Inzitari D, Pracucci G, et al. Cerebrospinal fluid proteins in patients with leucoaraiosis: possible abnormalities in blood-brain barrier function [J]. J Neurol Sci, 1993, 115(2): 125-131.
|
16 |
Wada M, Nagasawa H, Kurita K, et al. Microalbuminuria is a risk factor for cerebral small vessel disease in community-based elderly subjects [J]. J Neurol Sci, 2007, 255(1-2): 27-34.
|
17 |
Vermeer SE, van Dijk EJ, Koudstaal PJ, et al. Homocysteine, silent brain infarcts, and white matter lesions: the Rotterdam Scan Study [J]. Ann Neurol, 2002, 51(3): 285-289.
|
18 |
Piao X, Wu G, Yang P, et al. Association between Homocysteine and cerebral small vessel disease: a meta-analysis [J]. J Stroke Cerebrovasc Dis, 2018, 27(9): 2423-2430.
|
19 |
Markus HS, Hunt B, Palmer K, et al. Markers of endothelial and hemostatic activation and progression of cerebral white matter hyperintensities [J]. Stroke, 2005, 36(7): 1410-1414.
|
20 |
Wu BN, Wu J, Hao DL, et al. High serum sICAM-1 is correlated with cerebral microbleeds and hemorrhagic transformation in ischemic stroke patients [J]. Br J Neurosurg, 2018, 32(6): 631-636.
|
21 |
Yang Y, Estrada EY, Thompson JF, et al. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat [J]. J Cereb Blood Flow Metab, 2007, 27(4): 697-709.
|
22 |
Piao MS, Lee JK, Park CS, et al. Early activation of matrix metalloproteinase-9 is associated with blood-brain barrier disruption after photothrombotic cerebral ischemia in rats [J]. Acta Neurochir (Wien), 2009, 151(12): 1649-1653.
|
23 |
Nakaji K, Ihara M, Takahashi C, et al. Matrix metalloproteinase-2 plays a critical role in the pathogenesis of white matter lesions after chronic cerebral hypoperfusion in rodents [J]. Stroke, 2006, 37(11): 2816-2823.
|
24 |
Liu J, Jin X, Liu KJ, et al. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage [J]. J Neurosci, 2012, 32(9): 3044-3057.
|
25 |
Wright CB, Moon Y, Paik MC, et al. Inflammatory biomarkers of vascular risk as correlates of leukoariosis [J]. Stroke, 2009, 40(11): 3466-3471.
|
26 |
Miwa K, Tanaka M, Okazaki S, et al. Relations of blood inflammatory marker levels with cerebral microbleeds [J]. Stroke, 2011, 42(11): 3202-3206.
|
27 |
Lindbergh CA, Casaletto KB, Staffaroni AM, et al. Systemic tumor necrosis factor-alpha trajectories relate to brain health in typically aging older adults [J]. J Gerontol A Biol Sci Med Sci, 2020, 75(8): 1558-1565.
|
28 |
Jefferson AL, Massaro JM, Wolf PA, et al. Inflammatory biomarkers are associated with total brain volume: the Framingham Heart Study [J]. Neurology, 2007, 68(13): 1032-1038.
|
29 |
Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease [J]. Arterioscler Thromb Vasc Biol, 2005, 25(6): 1102-1111.
|
30 |
Shoamanesh A, Preis SR, Beiser AS, et al. Inflammatory biomarkers, cerebral microbleeds, and small vessel disease: Framingham Heart Study [J]. Neurology, 2015, 84(8): 825-832.
|
31 |
Provenzano FA, Muraskin J, Tosto G, et al. White matter hyperintensities and cerebral amyloidosis: necessary and sufficient for clinical expression of Alzheimer disease? [J]. JAMA Neurol, 2013, 70(4): 455-461.
|
32 |
Erten-Lyons D, Woltjer R, Kaye J, et al. Neuropathologic basis of white matter hyperintensity accumulation with advanced age [J]. Neurology, 2013, 81(11): 977-983.
|
33 |
Niwa K, Younkin L, Ebeling C, et al. Abeta 1-40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation [J]. Proc Natl Acad Sci U S A, 2000, 97(17): 9735-9740.
|
34 |
Habes M, Pomponio R, Shou H, et al. The Brain Chart of Aging: Machine-learning analytics reveals links between brain aging, white matter disease, amyloid burden, and cognition in the iSTAGING consortium of 10,216 harmonized MR scans [J]. Alzheimers Dement, 2021, 17(1): 89-102.
|
35 |
Gomis M, Sobrino T, Ois A, et al. Plasma beta-amyloid 1-40 is associated with the diffuse small vessel disease subtype [J]. Stroke, 2009, 40(10): 3197-3201.
|
36 |
van Leijsen EMC, Kuiperij HB, Kersten I, et al. Plasma Aβ (Amyloid-β) levels and severity and progression of small vessel disease [J]. Stroke, 2018, 49(4): 884-890.
|
37 |
Romero JR, Demissie S, Beiser A, et al. Relation of plasma β-amyloid, clusterin, and tau with cerebral microbleeds: Framingham Heart Study [J]. Ann Clin Transl Neurol, 2020, 7(7): 1083-1091.
|
38 |
McAleese KE, Firbank M, Dey M, et al. Cortical tau load is associated with white matter hyperintensities [J]. Acta Neuropathol Commun, 2015, 3: 60.
|
39 |
Tosto G, Zimmerman ME, Hamilton JL, et al. The effect of white matter hyperintensities on neurodegeneration in mild cognitive impairment [J]. Alzheimers Dement, 2015, 11(12): 1510-1519.
|
40 |
Deters KD, Risacher SL, Kim S, et al. Plasma tau association with brain atrophy in mild cognitive impairment and Alzheimer's disease [J]. J Alzheimers Dis, 2017, 58(4): 1245-1254.
|
41 |
Mollenhauer B, Dakna M, Kruse N, et al. Validation of serum neurofilament light chain as a biomarker of Parkinson's disease progression [J]. Mov Disord, 2020, 35(11): 1999-2008.
|
42 |
Duering M, Konieczny MJ, Tiedt S, et al. Serum neurofilament light chain levels are related to small vessel disease burden [J]. J Stroke, 2018, 20(2): 228-238.
|
43 |
Egle M, Loubiere L, Maceski A, et al. Neurofilament light chain predicts future dementia risk in cerebral small vessel disease [J]. J Neurol Neurosurg Psychiatry, 2021, 92(6): 582-589.
|
44 |
Qu Y, Tan CC, Shen XN, et al. Association of plasma neurofilament light with small vessel disease burden in nondemented elderly: A Longitudinal Study [J]. Stroke, 2021, 52(3): 896-904.
|