切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 57 -60. doi: 10.11817/j.issn.1673-9248.2023.01.011

综述

内皮功能、炎症、神经系统退行性疾病的生物标志物与小动脉硬化型CSVD的关联
李卓然1, 胡文立1,()   
  1. 1. 100020 首都医科大学附属北京朝阳医院神经内科
  • 收稿日期:2022-11-02 出版日期:2023-02-01
  • 通信作者: 胡文立
  • 基金资助:
    国家自然科学基金面上项目(30971037)

Association of biomarkers of endothelial function, inflammation, and neurodegenerative diseases with arteriosclerotic cerebral small vessel disease

Zhuoran Li1, Wenli Hu1,()   

  1. 1. Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
  • Received:2022-11-02 Published:2023-02-01
  • Corresponding author: Wenli Hu
引用本文:

李卓然, 胡文立. 内皮功能、炎症、神经系统退行性疾病的生物标志物与小动脉硬化型CSVD的关联[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 57-60.

Zhuoran Li, Wenli Hu. Association of biomarkers of endothelial function, inflammation, and neurodegenerative diseases with arteriosclerotic cerebral small vessel disease[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2023, 17(01): 57-60.

脑小血管病(CSVD)是导致老年人痴呆的主要原因,目前研究发现部分内皮功能、炎症、神经系统退变疾病的生物标志物与小动脉硬化型CSVD存在关联,可能对CSVD的发病有提示意义。本综述对这些生物标志物进行总结,以期理解CSVD的发病机制,为其早期诊断和治疗提供思路。

Cerebral small vessel disease (CSVD) is a major cause of dementia in elderly. Some studies showed that biomarkers of endothelial dysfunction, inflammation and neurodegenerative diseases are associated with arteriosclerotic CSVD, which may indicated the development of CSVD. The review summaries these biomarkers to provide an insight into the pathogenesis, early diagnosis and treatment in CSVD.

1
Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications [J]. Lancet Neurol, 2019, 18(7): 684-696.
2
胡文立, 杨磊, 李譞婷, 等. 中国脑小血管病诊治专家共识2021 [J]. 中国卒中杂志, 2021, 16(7): 716-726.
3
Auriel E, Csiba L, Berenyi E, et al. Leukoaraiosis is associated with arterial wall thickness: a quantitative analysis [J]. Neuropathology, 2012, 32(3): 227-233.
4
Munoz DG. Leukoaraiosis and ischemia: beyond the myth [J]. Stroke, 2006, 37(6): 1348-1349.
5
Zhang CE, Wong SM, van de Haar HJ, et al. Blood-brain barrier leakage is more widespread in patients with cerebral small vessel disease [J]. Neurology, 2017, 88(5): 426-432.
6
Nezu T, Hosomi N, Aoki S, et al. Endothelial dysfunction is associated with the severity of cerebral small vessel disease [J]. Hypertens Res, 2015, 38(4): 291-297.
7
De Guio F, Vignaud A, Ropele S, et al. Loss of venous integrity in cerebral small vessel disease: a 7-T MRI study in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) [J]. Stroke, 2014, 45(7): 2124-2126.
8
Charidimou A, Pantoni L, Love S. The concept of sporadic cerebral small vessel disease: A road map on key definitions and current concepts [J]. Int J Stroke, 2016, 11(1): 6-18.
9
O'Sullivan M, Lythgoe DJ, Pereira AC, et al. Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis [J]. Neurology, 2002, 59(3): 321-326.
10
Hainsworth AH, Fisher MJ. A dysfunctional blood-brain barrier and cerebral small vessel disease [J]. Neurology, 2017, 88(5): 420-421.
11
Li Y, Li M, Zhang X, et al. Higher blood-brain barrier permeability is associated with higher white matter hyperintensities burden [J]. J Neurol, 2017, 264(7): 1474-1481.
12
Wiseman S, Marlborough F, Doubal F, et al. Blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus non-lacunar stroke and non-stroke: systematic review and meta-analysis [J]. Cerebrovasc Dis, 2014, 37(1): 64-75.
13
Kloppenborg RP, Geerlings MI, Visseren FL, et al. Homocysteine and progression of generalized small-vessel disease: the SMART-MR Study [J]. Neurology, 2014, 82(9): 777-783.
14
Simpson JE, Fernando MS, Clark L, et al. White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses [J]. Neuropathol Appl Neurobiol, 2007, 33(4): 410-419.
15
Pantoni L, Inzitari D, Pracucci G, et al. Cerebrospinal fluid proteins in patients with leucoaraiosis: possible abnormalities in blood-brain barrier function [J]. J Neurol Sci, 1993, 115(2): 125-131.
16
Wada M, Nagasawa H, Kurita K, et al. Microalbuminuria is a risk factor for cerebral small vessel disease in community-based elderly subjects [J]. J Neurol Sci, 2007, 255(1-2): 27-34.
17
Vermeer SE, van Dijk EJ, Koudstaal PJ, et al. Homocysteine, silent brain infarcts, and white matter lesions: the Rotterdam Scan Study [J]. Ann Neurol, 2002, 51(3): 285-289.
18
Piao X, Wu G, Yang P, et al. Association between Homocysteine and cerebral small vessel disease: a meta-analysis [J]. J Stroke Cerebrovasc Dis, 2018, 27(9): 2423-2430.
19
Markus HS, Hunt B, Palmer K, et al. Markers of endothelial and hemostatic activation and progression of cerebral white matter hyperintensities [J]. Stroke, 2005, 36(7): 1410-1414.
20
Wu BN, Wu J, Hao DL, et al. High serum sICAM-1 is correlated with cerebral microbleeds and hemorrhagic transformation in ischemic stroke patients [J]. Br J Neurosurg, 2018, 32(6): 631-636.
21
Yang Y, Estrada EY, Thompson JF, et al. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat [J]. J Cereb Blood Flow Metab, 2007, 27(4): 697-709.
22
Piao MS, Lee JK, Park CS, et al. Early activation of matrix metalloproteinase-9 is associated with blood-brain barrier disruption after photothrombotic cerebral ischemia in rats [J]. Acta Neurochir (Wien), 2009, 151(12): 1649-1653.
23
Nakaji K, Ihara M, Takahashi C, et al. Matrix metalloproteinase-2 plays a critical role in the pathogenesis of white matter lesions after chronic cerebral hypoperfusion in rodents [J]. Stroke, 2006, 37(11): 2816-2823.
24
Liu J, Jin X, Liu KJ, et al. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage [J]. J Neurosci, 2012, 32(9): 3044-3057.
25
Wright CB, Moon Y, Paik MC, et al. Inflammatory biomarkers of vascular risk as correlates of leukoariosis [J]. Stroke, 2009, 40(11): 3466-3471.
26
Miwa K, Tanaka M, Okazaki S, et al. Relations of blood inflammatory marker levels with cerebral microbleeds [J]. Stroke, 2011, 42(11): 3202-3206.
27
Lindbergh CA, Casaletto KB, Staffaroni AM, et al. Systemic tumor necrosis factor-alpha trajectories relate to brain health in typically aging older adults [J]. J Gerontol A Biol Sci Med Sci, 2020, 75(8): 1558-1565.
28
Jefferson AL, Massaro JM, Wolf PA, et al. Inflammatory biomarkers are associated with total brain volume: the Framingham Heart Study [J]. Neurology, 2007, 68(13): 1032-1038.
29
Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease [J]. Arterioscler Thromb Vasc Biol, 2005, 25(6): 1102-1111.
30
Shoamanesh A, Preis SR, Beiser AS, et al. Inflammatory biomarkers, cerebral microbleeds, and small vessel disease: Framingham Heart Study [J]. Neurology, 2015, 84(8): 825-832.
31
Provenzano FA, Muraskin J, Tosto G, et al. White matter hyperintensities and cerebral amyloidosis: necessary and sufficient for clinical expression of Alzheimer disease? [J]. JAMA Neurol, 2013, 70(4): 455-461.
32
Erten-Lyons D, Woltjer R, Kaye J, et al. Neuropathologic basis of white matter hyperintensity accumulation with advanced age [J]. Neurology, 2013, 81(11): 977-983.
33
Niwa K, Younkin L, Ebeling C, et al. Abeta 1-40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation [J]. Proc Natl Acad Sci U S A, 2000, 97(17): 9735-9740.
34
Habes M, Pomponio R, Shou H, et al. The Brain Chart of Aging: Machine-learning analytics reveals links between brain aging, white matter disease, amyloid burden, and cognition in the iSTAGING consortium of 10,216 harmonized MR scans [J]. Alzheimers Dement, 2021, 17(1): 89-102.
35
Gomis M, Sobrino T, Ois A, et al. Plasma beta-amyloid 1-40 is associated with the diffuse small vessel disease subtype [J]. Stroke, 2009, 40(10): 3197-3201.
36
van Leijsen EMC, Kuiperij HB, Kersten I, et al. Plasma Aβ (Amyloid-β) levels and severity and progression of small vessel disease [J]. Stroke, 2018, 49(4): 884-890.
37
Romero JR, Demissie S, Beiser A, et al. Relation of plasma β-amyloid, clusterin, and tau with cerebral microbleeds: Framingham Heart Study [J]. Ann Clin Transl Neurol, 2020, 7(7): 1083-1091.
38
McAleese KE, Firbank M, Dey M, et al. Cortical tau load is associated with white matter hyperintensities [J]. Acta Neuropathol Commun, 2015, 3: 60.
39
Tosto G, Zimmerman ME, Hamilton JL, et al. The effect of white matter hyperintensities on neurodegeneration in mild cognitive impairment [J]. Alzheimers Dement, 2015, 11(12): 1510-1519.
40
Deters KD, Risacher SL, Kim S, et al. Plasma tau association with brain atrophy in mild cognitive impairment and Alzheimer's disease [J]. J Alzheimers Dis, 2017, 58(4): 1245-1254.
41
Mollenhauer B, Dakna M, Kruse N, et al. Validation of serum neurofilament light chain as a biomarker of Parkinson's disease progression [J]. Mov Disord, 2020, 35(11): 1999-2008.
42
Duering M, Konieczny MJ, Tiedt S, et al. Serum neurofilament light chain levels are related to small vessel disease burden [J]. J Stroke, 2018, 20(2): 228-238.
43
Egle M, Loubiere L, Maceski A, et al. Neurofilament light chain predicts future dementia risk in cerebral small vessel disease [J]. J Neurol Neurosurg Psychiatry, 2021, 92(6): 582-589.
44
Qu Y, Tan CC, Shen XN, et al. Association of plasma neurofilament light with small vessel disease burden in nondemented elderly: A Longitudinal Study [J]. Stroke, 2021, 52(3): 896-904.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[3] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[4] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[5] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[6] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[7] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[8] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[9] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[10] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[11] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[12] 晏美娟, 邵礼晖. 高水平脂蛋白(a)与无“三高”老年人群小动脉硬化型脑小血管病的相关性研究[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 458-463.
[13] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[14] 白明悦, 杨淑娜, 胡红梅, 胡文立. 透析患者脑小血管病患病情况的研究现状及其机制探讨[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 505-509.
[15] 丁文华, 王育伟, 邱景景, 杨琼, 耿玉荣. 脑小血管病影像学标志物与运动障碍研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 429-434.
阅读次数
全文


摘要