切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 57 -60. doi: 10.11817/j.issn.1673-9248.2023.01.011

综述

内皮功能、炎症、神经系统退行性疾病的生物标志物与小动脉硬化型CSVD的关联
李卓然1, 胡文立1,()   
  1. 1. 100020 首都医科大学附属北京朝阳医院神经内科
  • 收稿日期:2022-11-02 出版日期:2023-02-01
  • 通信作者: 胡文立
  • 基金资助:
    国家自然科学基金面上项目(30971037)

Association of biomarkers of endothelial function, inflammation, and neurodegenerative diseases with arteriosclerotic cerebral small vessel disease

Zhuoran Li1, Wenli Hu1,()   

  1. 1. Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
  • Received:2022-11-02 Published:2023-02-01
  • Corresponding author: Wenli Hu
引用本文:

李卓然, 胡文立. 内皮功能、炎症、神经系统退行性疾病的生物标志物与小动脉硬化型CSVD的关联[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(01): 57-60.

Zhuoran Li, Wenli Hu. Association of biomarkers of endothelial function, inflammation, and neurodegenerative diseases with arteriosclerotic cerebral small vessel disease[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2023, 17(01): 57-60.

脑小血管病(CSVD)是导致老年人痴呆的主要原因,目前研究发现部分内皮功能、炎症、神经系统退变疾病的生物标志物与小动脉硬化型CSVD存在关联,可能对CSVD的发病有提示意义。本综述对这些生物标志物进行总结,以期理解CSVD的发病机制,为其早期诊断和治疗提供思路。

Cerebral small vessel disease (CSVD) is a major cause of dementia in elderly. Some studies showed that biomarkers of endothelial dysfunction, inflammation and neurodegenerative diseases are associated with arteriosclerotic CSVD, which may indicated the development of CSVD. The review summaries these biomarkers to provide an insight into the pathogenesis, early diagnosis and treatment in CSVD.

1
Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications [J]. Lancet Neurol, 2019, 18(7): 684-696.
2
胡文立, 杨磊, 李譞婷, 等. 中国脑小血管病诊治专家共识2021 [J]. 中国卒中杂志, 2021, 16(7): 716-726.
3
Auriel E, Csiba L, Berenyi E, et al. Leukoaraiosis is associated with arterial wall thickness: a quantitative analysis [J]. Neuropathology, 2012, 32(3): 227-233.
4
Munoz DG. Leukoaraiosis and ischemia: beyond the myth [J]. Stroke, 2006, 37(6): 1348-1349.
5
Zhang CE, Wong SM, van de Haar HJ, et al. Blood-brain barrier leakage is more widespread in patients with cerebral small vessel disease [J]. Neurology, 2017, 88(5): 426-432.
6
Nezu T, Hosomi N, Aoki S, et al. Endothelial dysfunction is associated with the severity of cerebral small vessel disease [J]. Hypertens Res, 2015, 38(4): 291-297.
7
De Guio F, Vignaud A, Ropele S, et al. Loss of venous integrity in cerebral small vessel disease: a 7-T MRI study in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) [J]. Stroke, 2014, 45(7): 2124-2126.
8
Charidimou A, Pantoni L, Love S. The concept of sporadic cerebral small vessel disease: A road map on key definitions and current concepts [J]. Int J Stroke, 2016, 11(1): 6-18.
9
O'Sullivan M, Lythgoe DJ, Pereira AC, et al. Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis [J]. Neurology, 2002, 59(3): 321-326.
10
Hainsworth AH, Fisher MJ. A dysfunctional blood-brain barrier and cerebral small vessel disease [J]. Neurology, 2017, 88(5): 420-421.
11
Li Y, Li M, Zhang X, et al. Higher blood-brain barrier permeability is associated with higher white matter hyperintensities burden [J]. J Neurol, 2017, 264(7): 1474-1481.
12
Wiseman S, Marlborough F, Doubal F, et al. Blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus non-lacunar stroke and non-stroke: systematic review and meta-analysis [J]. Cerebrovasc Dis, 2014, 37(1): 64-75.
13
Kloppenborg RP, Geerlings MI, Visseren FL, et al. Homocysteine and progression of generalized small-vessel disease: the SMART-MR Study [J]. Neurology, 2014, 82(9): 777-783.
14
Simpson JE, Fernando MS, Clark L, et al. White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses [J]. Neuropathol Appl Neurobiol, 2007, 33(4): 410-419.
15
Pantoni L, Inzitari D, Pracucci G, et al. Cerebrospinal fluid proteins in patients with leucoaraiosis: possible abnormalities in blood-brain barrier function [J]. J Neurol Sci, 1993, 115(2): 125-131.
16
Wada M, Nagasawa H, Kurita K, et al. Microalbuminuria is a risk factor for cerebral small vessel disease in community-based elderly subjects [J]. J Neurol Sci, 2007, 255(1-2): 27-34.
17
Vermeer SE, van Dijk EJ, Koudstaal PJ, et al. Homocysteine, silent brain infarcts, and white matter lesions: the Rotterdam Scan Study [J]. Ann Neurol, 2002, 51(3): 285-289.
18
Piao X, Wu G, Yang P, et al. Association between Homocysteine and cerebral small vessel disease: a meta-analysis [J]. J Stroke Cerebrovasc Dis, 2018, 27(9): 2423-2430.
19
Markus HS, Hunt B, Palmer K, et al. Markers of endothelial and hemostatic activation and progression of cerebral white matter hyperintensities [J]. Stroke, 2005, 36(7): 1410-1414.
20
Wu BN, Wu J, Hao DL, et al. High serum sICAM-1 is correlated with cerebral microbleeds and hemorrhagic transformation in ischemic stroke patients [J]. Br J Neurosurg, 2018, 32(6): 631-636.
21
Yang Y, Estrada EY, Thompson JF, et al. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat [J]. J Cereb Blood Flow Metab, 2007, 27(4): 697-709.
22
Piao MS, Lee JK, Park CS, et al. Early activation of matrix metalloproteinase-9 is associated with blood-brain barrier disruption after photothrombotic cerebral ischemia in rats [J]. Acta Neurochir (Wien), 2009, 151(12): 1649-1653.
23
Nakaji K, Ihara M, Takahashi C, et al. Matrix metalloproteinase-2 plays a critical role in the pathogenesis of white matter lesions after chronic cerebral hypoperfusion in rodents [J]. Stroke, 2006, 37(11): 2816-2823.
24
Liu J, Jin X, Liu KJ, et al. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage [J]. J Neurosci, 2012, 32(9): 3044-3057.
25
Wright CB, Moon Y, Paik MC, et al. Inflammatory biomarkers of vascular risk as correlates of leukoariosis [J]. Stroke, 2009, 40(11): 3466-3471.
26
Miwa K, Tanaka M, Okazaki S, et al. Relations of blood inflammatory marker levels with cerebral microbleeds [J]. Stroke, 2011, 42(11): 3202-3206.
27
Lindbergh CA, Casaletto KB, Staffaroni AM, et al. Systemic tumor necrosis factor-alpha trajectories relate to brain health in typically aging older adults [J]. J Gerontol A Biol Sci Med Sci, 2020, 75(8): 1558-1565.
28
Jefferson AL, Massaro JM, Wolf PA, et al. Inflammatory biomarkers are associated with total brain volume: the Framingham Heart Study [J]. Neurology, 2007, 68(13): 1032-1038.
29
Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease [J]. Arterioscler Thromb Vasc Biol, 2005, 25(6): 1102-1111.
30
Shoamanesh A, Preis SR, Beiser AS, et al. Inflammatory biomarkers, cerebral microbleeds, and small vessel disease: Framingham Heart Study [J]. Neurology, 2015, 84(8): 825-832.
31
Provenzano FA, Muraskin J, Tosto G, et al. White matter hyperintensities and cerebral amyloidosis: necessary and sufficient for clinical expression of Alzheimer disease? [J]. JAMA Neurol, 2013, 70(4): 455-461.
32
Erten-Lyons D, Woltjer R, Kaye J, et al. Neuropathologic basis of white matter hyperintensity accumulation with advanced age [J]. Neurology, 2013, 81(11): 977-983.
33
Niwa K, Younkin L, Ebeling C, et al. Abeta 1-40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation [J]. Proc Natl Acad Sci U S A, 2000, 97(17): 9735-9740.
34
Habes M, Pomponio R, Shou H, et al. The Brain Chart of Aging: Machine-learning analytics reveals links between brain aging, white matter disease, amyloid burden, and cognition in the iSTAGING consortium of 10,216 harmonized MR scans [J]. Alzheimers Dement, 2021, 17(1): 89-102.
35
Gomis M, Sobrino T, Ois A, et al. Plasma beta-amyloid 1-40 is associated with the diffuse small vessel disease subtype [J]. Stroke, 2009, 40(10): 3197-3201.
36
van Leijsen EMC, Kuiperij HB, Kersten I, et al. Plasma Aβ (Amyloid-β) levels and severity and progression of small vessel disease [J]. Stroke, 2018, 49(4): 884-890.
37
Romero JR, Demissie S, Beiser A, et al. Relation of plasma β-amyloid, clusterin, and tau with cerebral microbleeds: Framingham Heart Study [J]. Ann Clin Transl Neurol, 2020, 7(7): 1083-1091.
38
McAleese KE, Firbank M, Dey M, et al. Cortical tau load is associated with white matter hyperintensities [J]. Acta Neuropathol Commun, 2015, 3: 60.
39
Tosto G, Zimmerman ME, Hamilton JL, et al. The effect of white matter hyperintensities on neurodegeneration in mild cognitive impairment [J]. Alzheimers Dement, 2015, 11(12): 1510-1519.
40
Deters KD, Risacher SL, Kim S, et al. Plasma tau association with brain atrophy in mild cognitive impairment and Alzheimer's disease [J]. J Alzheimers Dis, 2017, 58(4): 1245-1254.
41
Mollenhauer B, Dakna M, Kruse N, et al. Validation of serum neurofilament light chain as a biomarker of Parkinson's disease progression [J]. Mov Disord, 2020, 35(11): 1999-2008.
42
Duering M, Konieczny MJ, Tiedt S, et al. Serum neurofilament light chain levels are related to small vessel disease burden [J]. J Stroke, 2018, 20(2): 228-238.
43
Egle M, Loubiere L, Maceski A, et al. Neurofilament light chain predicts future dementia risk in cerebral small vessel disease [J]. J Neurol Neurosurg Psychiatry, 2021, 92(6): 582-589.
44
Qu Y, Tan CC, Shen XN, et al. Association of plasma neurofilament light with small vessel disease burden in nondemented elderly: A Longitudinal Study [J]. Stroke, 2021, 52(3): 896-904.
[1] 杨桂清, 孟静静. 哺乳期亚临床乳腺炎的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 376-379.
[2] 蚁淳, 袁冬生, 熊学军. 系统免疫炎症指数与骨密度降低和骨质疏松的关联[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 609-617.
[3] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[4] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[5] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[6] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[7] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[8] 杜贵伟, 陆勇, 成博, 贺薏, 梁爽. 钬激光碎石术术后联合坦索罗辛治疗对输尿管结石患者的影响分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 491-496.
[9] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[10] 邢嘉翌, 龚佳晟, 祝佳佳, 陆群. 肺癌化疗患者继发肺部感染的病原菌耐药性及炎症因子变化分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 714-718.
[11] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[12] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[13] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[14] 杭丽, 张耀辉, 孙文恺. 参菝抗瘤液对结直肠腺瘤性息肉术后肠道功能、炎症指标及复发情况的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 413-416.
[15] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
阅读次数
全文


摘要