切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 61 -65. doi: 10.11817/j.issn.1673-9248.2023.01.012

综述

TLR4信号通路与神经系统疾病关系的研究进展
高海杰1, 王宝军2,()   
  1. 1. 014040 内蒙古包头,内蒙古医科大学包头临床医学院
    2. 014040 内蒙古包头,包头市中心医院神经内科
  • 收稿日期:2022-09-30 出版日期:2023-02-01
  • 通信作者: 王宝军
  • 基金资助:
    国家自然科学基金项目(81860210)

Advance in the relationship between TLR4 signaling pathway and nervous system diseases

Haijie Gao1, Baojun Wang2,()   

  1. 1. Baotou Clinical College of Medicine, Inner Mongolia Medical University, Baotou 014040, China
    2. Department of Neurology, Baotou Central Hospital, Baotou 014040, China
  • Received:2022-09-30 Published:2023-02-01
  • Corresponding author: Baojun Wang
引用本文:

高海杰, 王宝军. TLR4信号通路与神经系统疾病关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 61-65.

Haijie Gao, Baojun Wang. Advance in the relationship between TLR4 signaling pathway and nervous system diseases[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2023, 17(01): 61-65.

Toll样受体4(TLR4)作为一种模式识别受体,是先天免疫炎症反应的关键触发点。研究证实TLR4信号通路介导的免疫炎症反应在脑卒中、阿尔茨海默病、帕金森病等神经系统疾病中发挥着关键作用。本文主要就TLR4信号通路在神经系统疾病中的研究进展做一综述,为TLR4用于神经系统疾病的靶向治疗拓展新思路。

Toll-like receptor 4 (TLR4), as a kind of pattern recognition receptor, is the key trigger of innate immune inflammatory response. Studies have confirmed that TLR4 signaling pathway-mediated immune inflammatory response plays a key role in stroke, Alzheimer's disease, Parkinson's disease, and other neurological diseases. This article mainly reviews the research progress of TLR4 signaling pathway in nervous system diseases, so as to inspire new ideas for TLR4-targeted therapy for nervous system diseases.

图1 TLR4信号通路 注:TLR4为Toll样受体4;TIRAP为Toll/IL-1受体结构域衔接蛋白;TRAM为TRIF相关受体衔接分子;TRIF为TIR结构域衔接蛋白;MYD88为髓系分化因子88;TRAF3为肿瘤坏死因子受体相关因子3;TBK1为TANK结合激酶1;IKK为IκB激酶;IRF-3为干扰素调节因子3;INF-α为干扰素α;INF-β为干扰素β;IL为白介素;TGF-β为转化生长因子-β;RIP1为受体相互作用蛋白1;IRAKs为白介素1受体相关激酶;TRAF6为肿瘤坏死因子受体相关因子6;MAPK为丝裂原活化蛋白激酶;ERK为细胞外信号调节激酶;JNK为c-Junn端激酶;AP-1为激活蛋白1;TNF-α为肿瘤坏死因子α;NF-κB为核转录因子-κB
1
Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity [J]. Cell, 2020, 180(6): 1044-1066.
2
Gárate I, Garcia-Bueno B, Madrigal JL, et al. Stress-induced neuroinflammation: role of the Toll-like receptor-4 pathway [J]. Biol Psychiat, 2013, 73(1): 32-43.
3
Zhong J, Qiu X, Yu Q, et al. A novel polysaccharide from Acorus tatarinowii protects against LPS-induced neuroinflammation and neurotoxicity by inhibiting TLR4-mediated MyD88/NF-kappaB and PI3K/Akt signaling pathways [J]. Int J Biol Macromol, 2020, 163: 464-475.
4
Sharma S, Garg I, Ashraf MZ. TLR signalling and association of TLR polymorphism with cardiovascular diseases [J]. Vascul Pharmacol, 2016, 87: 30-37.
5
Lin CH, Chen HY, Wei KC. Role of HMGB1/TLR4 ax is in ischemia/re-perfusion-impaired extracellular glutamate clearance in primary astrocytes [J]. Cells, 2020, 9(12): 2585.
6
Leitner GR, Wenzel TJ, Marshall N, et al. Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders [J]. Expert Opin Ther Targets, 2019, 23(10): 865-882.
7
Jiang H, Wang Y, Liang X, et al. Toll-like receptor 4 knockdown attenuates brain damage and neuroinflammation after traumatic brain injury via inhibiting neuronal autophagy and astrocyte activation [J].Cell Mol Neurobiol, 2017, 38(5): 1009-1019.
8
Nalamolu KR, Smith NJ, Chelluboina B, et al. Prevention of the severity of post-ischemic inflammation and brain damage by simultaneous knockdown of toll-like receptors 2 and 4 [J]. Neuroscience, 2018, 373: 82-91.
9
Durán-Laforet V, Peña-Martínez C, García-Culebras A, et al. Pathophysiological and pharmacological relevance of TLR4 in peripheral immune cells after stroke [J]. Pharmacol Ther, 2021, 228: 107933.
10
Durán-Laforet V, Peña-Martínez C, García-Culebras A, et al. Role of TLR4 in neutrophil dynamics and functions: contribution to stroke pathophysiology [J]. Front Immunol, 2021, 12: 757872.
11
García-Culebras A, Durán-Laforet V, Peña-Martínez C, et al. Role of TLR4 (toll-like receptor 4) in N1/N2 neutrophil programming after stroke [J]. Stroke, 2019, 50(10): 2922-2932.
12
Morales I, Guzmán-Martínez L, Cerda-Troncoso C, et al. Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approaches [J]. Front Cell Neurosci, 2014, 8: 112.
13
He Y, Ruganzu JB, Jin H, et al. LRP1 knockdown aggravates Aβ1-42-stimulated microglial and astrocytic neuroinflammatory responses by modulating TLR4/NF-κB/MAPKs signaling pathways [J]. Exp Cell Res, 2020, 394(2): 112166.
14
Guo MF, Zhang HY, Li YH, et al. Fasudil inhibits the activation of microglia and astrocytes of transgenic Alzheimer's disease mice via the downregulation of TLR4/Myd88/NF-κB pathway [J]. J Neuroimmunol, 2020, 346: 577284.
15
Vollmar P, Kullmann JS, Thilo B, et al. Active immunization with amyloid-beta 1-42 impairs memory performance through TLR2/4-dependent activation of the innate immune system [J]. J Immunol (Baltimore, Md: 1950), 2010, 185(10): 6338-6347.
16
Yeh FL, Hansen DV, Sheng M. TREM2, microglia, and neurodegenerative diseases [J]. Trends Mol Med, 2017, 23(6): 512-533.
17
Ruganzu JB, Peng X, He Y, et al. Downregulation of TREM2 expression exacerbates neuroinflammatory responses through TLR4-mediated MAPK signaling pathway in a transgenic mouse model of Alzheimer's disease [J]. Mol Immunol, 2022, 142: 22-36.
18
Caputi V, Giron MC. Microbiome-gut-brain axis and toll-like receptors in Parkinson's disease [J]. Int J Mol Sci, 2018, 19(6): 1689.
19
Kouli A, Horne CB, Williams-Gray CH. Toll-like receptors and their therapeutic potential in Parkinson's disease and α-synucleinopathies [J]. Brain Behav Immun, 2019, 81: 41-51.
20
Campolo M, Paterniti I, Siracusa R, et al. TLR4 absence reduces neuro-inflammation and inflammasome activation in Parkinson's diseases in vivo model [J]. Brain Behav Immun, 2019, 76: 236-247.
21
Qin Y, Liu Y, Hao W, et al. Stimulation of TLR4 attenuates Alzheimer's disease-related symptoms and pathology in tau-transgenic mice [J]. J Immunol, 2016, 197(8): 3281-3292.
22
Choi I, Zhang Y, Seegobin SP, et al. Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration [J]. Nat Commun, 2020, 11(1): 1386.
23
Perez-Pardo P, Dodiya HB, Engen PA, et al. Role of TLR4 in the gut-brain axis in Parkinson's disease: a translational study from men to mice [J]. Gut, 2019, 68(5): 829-843.
24
Okada T, Suzuki H. Toll-like receptor 4 as a possible therapeutic target for delayed brain injuries after aneurysmal subarachnoid hemorrhage [J]. Neural Regen Res, 2017, 12(2): 193-196.
25
Ma C, Zhou W, Yan Z, et al. Toll-like receptor 4 (TLR4) is associated with cerebral vasospasm and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage [J]. Neurol Med Chir (Tokyo), 2015, 55(12): 878-884.
26
Okada T, Kawakita F, Nishikawa H, et al. Selective toll-like receptor 4 antagonists prevent acute blood-brain barrier disruption after subarachnoid hemorrhage in mice [J]. Mol Neurobiol, 2019, 56(2): 976-985.
27
郝广志, 邹正, 陈立刚, 等. TLR4-NLRP3介导蛛网膜下腔出血早期大鼠神经细胞焦亡 [J]. 神经解剖学杂志, 2022, 38(1): 74-78.
28
El-Sisi AEE, Sokar SS, Shebl AM, et al. Octreotide and melatonin alleviate inflammasome-induced pyroptosis through inhibition of TLR4-NF-κB-NLRP3 pathway in hepatic ischemia/reperfusion injury [J]. Toxicol Appl Pharmacol, 2021, 410: 115340.
29
Ahmed H, Khan MA, Kahlert UD, et al. Role of adaptor protein myeloid differentiation 88 (myd88) in post-subarachnoid hemorrhage inflammation: a systematic review [J]. Int J Mol Sci, 2021, 22(8): 4185.
30
Asadzadeh Manjili F, Yousefi-Ahmadipour A, Kazemi Arababadi M. The roles played by TLR4 in the pathogenesis of multiple sclerosis; A systematic review article [J]. Immunol Lett, 2020, 220: 63-70.
31
Labib DA, Ashmawy I, Elmazny A, et al. Toll-like receptors 2 and 4 expression on peripheral blood lymphocytes and neutrophils of Egyptian multiple sclerosis patients [J]. Int J Neurosci, 2022, 132(4): 323-327.
32
Church JS, Milich LM, Lerch JK, et al. E6020, a synthetic TLR4 agonist, accelerates myelin debris clearance, Schwann cell infiltration, and remyelination in the rat spinal cord [J]. Glia, 2017, 65(6): 883-899.
33
Ding Y, Botchway BOA, Zhang Y, et al. The combination of autologous mesenchymal stem cell-derived exosomes and neurotrophic factors as an intervention for amyotrophic lateral sclerosis [J]. Ann Anat, 2022, 242: 151921.
34
Lee JD, Liu N, Levin SC, et al. Therapeutic blockade of HMGB1 reduces early motor deficits, but not survival in the SOD1G93A mouse model of amyotrophic lateral sclerosis [J]. J Neuroinflammation, 2019, 16(1): 45.
35
Paudel YN, Angelopoulou E, Piperi C, et al. Implication of HMGB1 signaling pathways in Amyotrophic lateral sclerosis (ALS): From molecular mechanisms to pre-clinical results [J]. Pharmacol Res, 2020, 156: 104792.
36
Cui W, Sun C, Ma Y, et al. Inhibition of TLR4 induces M2 microglial polarization and provides neuroprotection via the NLRP3 inflammasome in Alzheimer's disease [J]. Front Neurosci, 2020, 14: 444.
37
Hua F, Tang H, Wang J, et al. TAK-242, an antagonist for Toll-like receptor 4, protects against acute cerebral ischemia/reperfusion injury in mice [J]. J Cereb Blood Flow Metab, 2015, 35(4): 536-542.
38
张娟, 尚德静. Toll样受体4(TLR4)信号通路及其靶向药物的研究进展 [J]. 细胞与分子免疫学杂志, 2021, 37(7): 657-662.
39
Kaushik D, Bhandari R, Kuhad A. TLR4 as a therapeutic target for respiratory and neurological complications of SARS-CoV-2 [J]. Expert Opin Ther Targets, 2021, 25(6): 491-508.
40
Ye T, Li Y, Xiong D, et al. Combination of Danshen and ligustrazine has dual anti-inflammatory effect on macrophages and endothelial cells [J]. J Eth-nopharmacol, 2021, 266: 113425.
41
Kouli A, Horne CB, Williams-Gray CH. Toll-like receptors and their therapeutic potential in Parkinson's disease and α-synucleinopathies [J]. Brain Behav Immun, 2019, 81: 41-51.
42
Azam S, Jakaria M, Kim IS, et al. Regulation of toll-like receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: focus on TLR4 signaling [J]. Front Immunol, 2019, 10: 1000.
43
Le K, Song Z, Deng J, et al. Quercetin alleviates neonatal hypoxic-ischemic brain injury by inhibiting microglia-derived oxidative stress and TLR4-mediated inflammation [J]. Inflamm Res, 2020, 69(12): 1201-1213.
44
Li R, Zhou Y, Zhang S, et al. The natural (poly)phenols as modulators of microglia polarization via TLR4/NF-κB pathway exert anti-inflammatory activity in ischemic stroke [J]. Eur J Pharmacol, 2022, 914: 174660.
45
Song W, Wang T, Shi B, et al. Neuroprotective effects of microRNA-140-5p on ischemic stroke in mice via regulation of the TLR4/NF-κB axis [J]. Brain Res Bull, 2021, 168: 8-16.
46
Yan Y, Xia H, Hu J, et al. MicroRNA-542-3p regulates p-glycoprotein ex-pression in rat epilepsy via the toll-like receptor 4/nuclear factor-kappa B signaling pathway [J]. Curr Neurovasc Res, 2019, 16(5): 433-440.
47
Zhou Q, Wang Q, He B, et al. MicroRNA-322-5p reduced neuronal infla-mmation via the TLR4/TRAF6/NF-κB axis in a rat epilepsy model [J]. Open Med (Wars), 2022, 17(1): 907-914.
[1] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[2] 史孟杰, 贺仕才, 刘斐, 闫燕, 代毅, 王辉. 对miR-206在大鼠下肢缺血再灌注损伤过程中炎症反应的影响分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 249-255.
[3] 罗皓天, 陈丹莹, 王伟财, 周晨. 基质细胞衍生因子1/CXC趋化因子受体4轴在骨免疫相关疾病中的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 218-227.
[4] 张星哲, 郑秉暄, 邓格, 豆猛, 石玉婷, 卫田, 郭映聪, 韩锋, 赵艳龙, 丁晨光, 田普训. 髓源性抑制细胞通过抑制炎症反应减轻小鼠肾脏缺血再灌注损伤[J]. 中华移植杂志(电子版), 2023, 17(01): 42-46.
[5] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[6] 邓春文, 陈嵩, 钟裴, 闵师强, 万健. LncRNA CRNDE通过miR-181a-5p/SOX6轴调节脂多糖诱导人肺泡上皮细胞的炎症反应和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 129-136.
[7] 许磊, 孙杰, 陈先志, 张家泉, 李旺勇, 冯其柱, 王琦. 血液净化治疗在高血脂性重症胰腺炎中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 464-468.
[8] 刁世童, 王伊帆, 董润, 彭劲民, 何淑华, 翁利, 杜斌. eSOFA,qSOFA,SIRS对于脓毒症患者预后预测价值的比较:一项基于非ICU住院患者的前瞻性队列研究[J]. 中华重症医学电子杂志, 2023, 09(02): 143-148.
[9] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[10] 肖庆, 王诚, 周焜, 魏宜功. 脑-机接口的技术原理及临床应用[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 241-245.
[11] 吴绍伟. 迷走神经电刺激术治疗神经系统疾病的应用进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 180-184.
[12] 张赟辉, 罗军, 刘栗丽, 汪宏, 耿克明. 腹膜透析与血液透析对老年终末期肾病患者营养状况及炎症反应的影响[J]. 中华临床医师杂志(电子版), 2023, 17(04): 419-423.
[13] 何惠娴, 肖勇, 纪燕琴. 三角球囊与金属圆形节育器在中重度宫腔粘连术后患者中的应用比较[J]. 中华临床医师杂志(电子版), 2023, 17(02): 159-164.
[14] 孟智宏. 醒脑开窍针刺法治疗多系统疾病的机制研究现状[J]. 中华针灸电子杂志, 2023, 12(04): 142-145.
[15] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
阅读次数
全文


摘要