切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (04) : 404 -409. doi: 10.11817/j.issn.1673-9248.2023.04.017

综述

Toll样受体4在阿尔茨海默病中的研究进展
刘天姿, 王宝军()   
  1. 014040 内蒙古包头,内蒙古医科大学包头临床医学院
    014040 内蒙古包头,包头市中心医院神经内科
  • 收稿日期:2023-02-08 出版日期:2023-08-01
  • 通信作者: 王宝军
  • 基金资助:
    国家自然科学基金项目(81860210)

Research progress of Toll-like receptor 4 in Alzheimer's disease

Tianzi Liu, Baojun Wang()   

  1. Baotou Clinical College, Inner Mongolia Medical University, Baotou 014040, China
    Department of Neurology, Baotou Central Hospital, Baotou 014040, China
  • Received:2023-02-08 Published:2023-08-01
  • Corresponding author: Baojun Wang
引用本文:

刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.

Tianzi Liu, Baojun Wang. Research progress of Toll-like receptor 4 in Alzheimer's disease[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2023, 17(04): 404-409.

阿尔茨海默病(AD)是主要损害认知和记忆功能的中枢神经系统退行性疾病,AD的发病机制尚未完全阐明,近年研究表明神经炎症反应在AD发病机制中起着关键的作用,Toll样受体4(TLR4)作为AD中神经炎症的一个触发点,为AD的治疗提供了潜在的靶点,本文就此做一综述以期为AD的临床治疗提供参考借鉴。

Alzheimer's disease (AD) is a degenerative disease of the central nervous system that mainly damages cognitive and memory functions. The pathogenesis of AD has not been fully elucidated. Recent studies have shown that neuroinflammatory response plays a key role in the pathogenesis of AD. As a trigger point of neuroinflammation in AD, Toll-like receptor 4 (TLR4) provides a potential target for the treatment of AD. This review aims to provide references for clinical treatment of AD.

1
Klein HU, McCabe C, Gjoneska E, et al. Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer's human brains [J]. Nat Neurosci, 2019, 22(1): 37-46.
2
Jia L, Du Y, Chu L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study [J]. Lancet Public Health, 2020, 5(12): e661-e671.
3
Cascella R, Cecchi C. Calcium dyshomeostasis in Alzheimer's disease pathogenesis [J]. Int J Mol Sci, 2021, 22(9): 4914.
4
Khan S, Barve KH, Kumar MS. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer's disease [J]. Curr Neuropharmacol, 2020, 18(11): 1106-1125.
5
Pascoal TA, Benedet AL, Ashton NJ, et al. Microglial activation and tau propagate jointly across Braak stages [J]. Nat Med, 2021, 27(9): 1592-1599.
6
Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity [J]. Nature, 1997, 388(6640): 394-397.
7
Acioglu C, Heary RF, Elkabes S. Roles of neuronal toll-like receptors in neuropathic pain and central nervous system injuries and diseases [J]. Brain Behav Immun, 2022, 102: 163-178.
8
Anwar MA, Shah M, Kim J, et al. Recent clinical trends in Toll‐like receptor targeting therapeutics [J]. Med Res Rev, 2019, 39(3): 1053.
9
Owen AM, Fults JB, Patil NK, et al. TLR agonists as mediators of trained immunity: mechanistic insight and immunotherapeutic potential to combat infection [J]. Front Immunol, 2020, 11: 622614.
10
Miron J, Picard C, Frappier J, et al. TLR4 gene expression and pro-inflammatory cytokines in Alzheimer's disease and in response to hippocampal deafferentation in rodents [J]. J Alzheimers Dis, 2018, 63(4): 1547-1556.
11
Squillace S, Salvemini D. Toll-like receptor-mediated neuroinflammation: relevance for cognitive dysfunctions [J]. Trends Pharmacol Sci, 2022, 43(9): 726-739.
12
Duan T, Du Y, Xing C, et al. Toll-like receptor signaling and its role in cell-mediated immunity [J]. Front Immunol, 2022, 13: 812774.
13
Squillace S, Salvemini D. Toll-like receptor-mediated neuroinflammation: relevance for cognitive dysfunctions [J]. Trends Pharmacol Sci, 2022, 43(9): 726-739.
14
Fujikura M, Iwahara N, Hisahara S, et al. CD14 and Toll-like receptor 4 promote fibrillar Aβ42 uptake by microglia through a clathrin-mediated pathway [J]. J Alzheimers Dis, 2019, 68(1): 323-337.
15
Lu J, Zhang C, Lv J, et al. Antiallergic drug desloratadine as a selective antagonist of 5HT2A receptor ameliorates pathology of Alzheimer's disease model mice by improving microglial dysfunction [J]. Aging Cell, 2021, 20(1): e13286.
16
Yousefi N, Sotoodehnejadnematalahi F, Heshmati-Fakhr N, et al. Prestimulation of microglia through TLR4 pathway promotes interferon beta expression in a rat model of Alzheimer's disease [J]. J Mol Neurosci, 2019, 67(4): 495-503.
17
Miron J, Picard C, Lafaille-Magnan , et al. Association of TLR4 with Alzheimer's disease risk and presymptomatic biomarkers of inflammation [J]. Alzheimers Dement, 2019, 15(7): 951-960.
18
He Y, Ruganzu JB, Zheng Q, et al. Silencing of LRP1 exacerbates inflammatory response via TLR4/NF-κB/MAPKs signaling pathways in APP/PS1 transgenic mice [J]. Mol Neurobiol, 2020, 57(9): 3727-3743.
19
Cui W, Sun C, Ma Y, et al. Inhibition of TLR4 induces M2 microglial polarization and provides neuroprotection via the NLRP3 inflammasome in Alzheimer's disease [J]. Front Neurosci, 2020, 14: 444.
20
龙惠萍. TREM2基因在晚发型阿尔茨海默病 (LOAD)中介导炎症调节的机制研究 [D]. 南宁: 广西医科大学, 2020.
21
Jin X, Liu MY, Zhang DF, et al. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway [J]. CNS Neurosci Ther, 2019, 25(5): 575-590.
22
Muhammad T, Ikram M, Ullah R, et al. Hesperetin, a Citrus Flavonoid, attenuates LPS-Induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB Signaling [J]. Nutrients, 2019, 11(3): E648.
23
Yang L, Zhou R, Tong Y, et al. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation [J]. Neurobiol Dis, 2020, 140: 104814.
24
Lourenco MV, Frozza RL, De Freitas GB, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models [J]. Nat Med, 2019, 25(1): 165-175.
25
Blackmore DG, Turpin F, Palliyaguru T, et al. Low-intensity ultrasound restores long-term potentiation and memory in senescent mice through pleiotropic mechanisms including NMDAR signaling [J]. Mol Psychiatry, 2021, 26(11): 6975-6991.
26
Becker MFP, Tetzlaff C. The biophysical basis underlying the maintenance of early phase long-term potentiation [J]. PLoS Comput Biol, 2021, 17(3): e1008813.
27
Hughes C, Choi ML, Yi JH, et al. Beta amyloid aggregates induce sensitised TLR4 signalling causing long-term potentiation deficit and rat neuronal cell death [J]. Commun Biol, 2020, 3(1): 79.
28
Zhou Y, Song WM, Andhey PS, et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer's disease [J]. Nat Med, 2020, 26(1): 131-142.
29
Long H, Zhong G, Wang C, et al. TREM2 attenuates Aβ1-42-mediated neuroinflammation in BV-2 cells by downregulating TLR signaling [J]. Neurochem Res, 2019, 44(8): 1830-1839.
30
Lee CYD, Daggett A, Gu X, et al. Elevated TREM2 gene dosage reprograms microglia responsivity and ameliorates pathological phenotypes in Alzheimer's disease models [J]. Neuron, 2018, 97(5): 1032-1048.e5.
31
Ren M, Zhang M, Zhang X, et al. Hydroxysafflor yellow A inhibits Aβ1-42-induced neuroinflammation by modulating the phenotypic transformation of microglia via TREM2/TLR4/NF-κB pathway in BV-2 cells [J]. Neurochem Res, 2022, 47(3): 748-761.
32
Zhou J, Yu W, Zhang M, et al. Imbalance of microglial TLR4/TREM2 in LPS-treated APP/PS1 transgenic mice: a potential link between Alzheimer's disease and systemic inflammation [J]. Neurochem Res, 2019, 44(5): 1138-1151.
33
Kuwar R, Rolfe A, Di L, et al. A novel inhibitor targeting NLRP3 inflammasome reduces neuropathology and improves cognitive function in Alzheimer's disease transgenic mice [J]. J Alzheimers Dis, 2021, 82(4): 1769-1783.
34
Feng YS, Tan ZX, Wu LY, et al. The involvement of NLRP3 inflammasome in the treatment of Alzheimer's disease [J]. Ageing Res Rev, 2020, 64: 101192.
35
Ising C, Venegas C, Zhang S, et al. NLRP3 inflammasome activation drives tau pathology [J]. Nature, 2019, 575(7784): 669-673.
36
Tejera D, Mercan D, Sanchez-Caro JM, et al. Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome [J]. EMBO J, 2019, 38(17): e101064.
37
Zhang Y, Dong Z, Song W. NLRP3 inflammasome as a novel therapeutic target for Alzheimer's disease [J]. Signal Transduct Target Ther, 2020, 5(1): 37.
38
Zhong X, Liu M, Yao W, et al. Epigallocatechin-3-Gallate attenuates microglial inflammation and neurotoxicity by suppressing the activation of canonical and noncanonical inflammasome via TLR4/NF-κB pathway [J]. Mol Nutr Food Res, 2019, 63(21): e1801230.
39
Liu Y, Dai Y, Li Q, et al. Beta-amyloid activates NLRP3 inflammasome via TLR4 in mouse microglia [J]. Neurosci Lett, 2020, 736: 135279.
40
Yang J, Wise L, Fukuchi KI. TLR4 cross-talk with NLRP3 inflammasome and complement signaling pathways in Alzheimer's disease [J]. Front Immunol, 2020, 11: 724.
41
廖冬梅, 庞芳, 周敏, 等. 基于TLR4/NF-κB/NLRP3通路探讨电针对阿尔茨海默病小鼠认知障碍的影响 [J]. 针刺研究, 2022, 47(7): 565-572.
42
Guan PP, Cao LL, Wang P. Elevating the levels of calcium ions exacerbate Alzheimer's disease via inducing the production and aggregation of β-amyloid protein and phosphorylated Tau [J]. Int J Mol Sci, 2021, 22(11): 5900.
43
Calvo-Rodriguez M, García-Rodríguez C, Villalobos C, et al. Role of Toll like receptor 4 in Alzheimer's disease [J]. Front Immunol, 2020, 11: 1588.
44
Calvo-Rodríguez M, De La Fuente C, García-Durillo M, et al. Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca2+ responses, and neuron cell death in cultured rat hippocampal neurons [J]. J Neuroinflammation, 2017, 14(1): 24.
45
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, et al. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods [J]. J Cell Physiol, 2019, 234(5): 5451-5465.
46
Samadian M, Gholipour M, Hajiesmaeili M, et al. The eminent role of microRNAs in the pathogenesis of Alzheimer's disease [J]. Front Aging Neurosci, 2021, 13: 641080.
47
Bayraktar R, Bertilaccio MTS, Calin GA. The interaction between two worlds: microRNAs and Toll-like receptors [J]. Front Immunol, 2019, 10: 1053.
48
Mai H, Fan W, Wang Y, et al. Intranasal Administration of miR-146a Agomir rescued the pathological process and cognitive impairment in an AD mouse model [J]. Mol Ther Nucleic Acids, 2019, 18: 681-695.
49
Yang J, Malone F, Go M, et al. Lipopolysaccharide-Induced Exosomal miR-146a is involved in altered expression of Alzheimer's risk genes via suppression of TLR4 signaling [J]. J Mol Neurosci, 2021, 71(6): 1245-1255.
50
Wang M, Cao J, Gong C, et al. Exploring the microbiota-Alzheimer's disease linkage using short-term antibiotic treatment followed by fecal microbiota transplantation [J]. Brain Behav Immun, 2021, 96: 227-238.
51
Bruning EE, Coller JK, Wardill HR, et al. Site-specific contribution of Toll-like receptor 4 to intestinal homeostasis and inflammatory disease [J]. J Cell Physiol, 2021, 236(2): 877-888.
52
Keogh CE, Rude KM, Gareau MG. Role of pattern recognition receptors and the microbiota in neurological disorders [J]. J Physiol, 2021, 599(5): 1379-1389.
53
Liu S, Gao J, Zhu M, et al. Gut Microbiota and Dysbiosis in Alzheimer's disease: implications for pathogenesis and treatment [J]. Mol Neurobiol, 2020, 57(12): 5026-5043.
54
Lin C, Zhao S, Zhu Y, et al. Microbiota-gut-brain axis and Toll-like receptors in Alzheimer's disease [J]. Comput Struct Biotechnol J, 2019, 17: 1309-1317.
55
Yang X, Yu D, Xue L, et al. Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice [J]. Acta Pharm Sin B, 2020, 10(3): 475-487.
56
Ye T, Yuan S, Kong Y, et al. Effect of probiotic fungi against cognitive impairment in mice via regulation of the fungal microbiota-gut-brain axis [J]. J Agric Food Chem, 2022, 70(29): 9026-9038.
[1] 雷丽莉, 于晓峰, 王媛媛, 徐迎军. 人鼻病毒感染喘息急性发作儿童外周血NLRP3和TLR4水平及临床意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 440-445.
[2] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[3] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[4] 王颖, 吴德平, 刘煜, 刘国栋. miR-9-5p下调CXCR4减轻创伤性脑损伤大鼠的神经炎症和细胞凋亡[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 65-72.
[5] 孙婧婷, 李娜, 罗明辉, 高瑶瑶, 白义行, 朱国贞. 短链脂肪酸对小鼠缺血再灌注肾损伤的炎症及纤维化影响和作用机制研究[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 181-187.
[6] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[7] 罗丹, 柏宋磊, 易峰. HMGB1-TLR2/TLR4/RAGE通路与颅脑损伤并发认知功能障碍病情变化的关系研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 28-34.
[8] 王江波, 尹一鸣, 张冠群. 外周血生物标志物在阿尔茨海默病早期诊断中的价值[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 244-249.
[9] 李苒, 姜宇航, 陈泽浩, 何家恺, 闫珊珊, 鄢锦荣, 贾宝辉. 电针治疗阿尔茨海默病患者的先导性随机对照试验[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 218-224.
[10] 杨森, 阙玉梅, 丁莉, 王艺瑾, 侯庆宇. Hcy和AD7c-NTP在阿尔茨海默病诊断中的临床应用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 208-212.
[11] 李润东, 豆小文, 张秀明. 失笑散联合胃复春治疗慢性萎缩性胃炎的疗效及对血清免疫受体和炎症因子水平的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 470-473.
[12] 于伟伟, 张国高, 吴军, 胡俊, 黄一宁, 徐晶. 线粒体相关内质网膜相关线粒体功能障碍在阿尔茨海默病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 223-230.
[13] 刘俊彬, 张晓婷, 郭镜培, 刘佳妮, 于本帅, 张可, 周斌. 熊果酸通过抑制NLRP3介导的小胶质细胞焦亡减轻脑缺血再灌注损伤的研究[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 221-227.
[14] 刘霖, 张文欢, 宋雅茹, 姜云璐. Apelin-13 在阿尔茨海默病中的神经保护作用机制研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 276-280.
[15] 赵晓晓, 邱嘉婷, 张懿姝, 张蓉, 张棚, 刘晓蕾. 丁苯酞在各类型认知障碍治疗中的应用研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 19-26.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?