切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (04) : 404 -409. doi: 10.11817/j.issn.1673-9248.2023.04.017

综述

Toll样受体4在阿尔茨海默病中的研究进展
刘天姿, 王宝军()   
  1. 014040 内蒙古包头,内蒙古医科大学包头临床医学院
    014040 内蒙古包头,包头市中心医院神经内科
  • 收稿日期:2023-02-08 出版日期:2023-08-01
  • 通信作者: 王宝军
  • 基金资助:
    国家自然科学基金项目(81860210)

Research progress of Toll-like receptor 4 in Alzheimer's disease

Tianzi Liu, Baojun Wang()   

  1. Baotou Clinical College, Inner Mongolia Medical University, Baotou 014040, China
    Department of Neurology, Baotou Central Hospital, Baotou 014040, China
  • Received:2023-02-08 Published:2023-08-01
  • Corresponding author: Baojun Wang
引用本文:

刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.

Tianzi Liu, Baojun Wang. Research progress of Toll-like receptor 4 in Alzheimer's disease[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2023, 17(04): 404-409.

阿尔茨海默病(AD)是主要损害认知和记忆功能的中枢神经系统退行性疾病,AD的发病机制尚未完全阐明,近年研究表明神经炎症反应在AD发病机制中起着关键的作用,Toll样受体4(TLR4)作为AD中神经炎症的一个触发点,为AD的治疗提供了潜在的靶点,本文就此做一综述以期为AD的临床治疗提供参考借鉴。

Alzheimer's disease (AD) is a degenerative disease of the central nervous system that mainly damages cognitive and memory functions. The pathogenesis of AD has not been fully elucidated. Recent studies have shown that neuroinflammatory response plays a key role in the pathogenesis of AD. As a trigger point of neuroinflammation in AD, Toll-like receptor 4 (TLR4) provides a potential target for the treatment of AD. This review aims to provide references for clinical treatment of AD.

1
Klein HU, McCabe C, Gjoneska E, et al. Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer's human brains [J]. Nat Neurosci, 2019, 22(1): 37-46.
2
Jia L, Du Y, Chu L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study [J]. Lancet Public Health, 2020, 5(12): e661-e671.
3
Cascella R, Cecchi C. Calcium dyshomeostasis in Alzheimer's disease pathogenesis [J]. Int J Mol Sci, 2021, 22(9): 4914.
4
Khan S, Barve KH, Kumar MS. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer's disease [J]. Curr Neuropharmacol, 2020, 18(11): 1106-1125.
5
Pascoal TA, Benedet AL, Ashton NJ, et al. Microglial activation and tau propagate jointly across Braak stages [J]. Nat Med, 2021, 27(9): 1592-1599.
6
Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity [J]. Nature, 1997, 388(6640): 394-397.
7
Acioglu C, Heary RF, Elkabes S. Roles of neuronal toll-like receptors in neuropathic pain and central nervous system injuries and diseases [J]. Brain Behav Immun, 2022, 102: 163-178.
8
Anwar MA, Shah M, Kim J, et al. Recent clinical trends in Toll‐like receptor targeting therapeutics [J]. Med Res Rev, 2019, 39(3): 1053.
9
Owen AM, Fults JB, Patil NK, et al. TLR agonists as mediators of trained immunity: mechanistic insight and immunotherapeutic potential to combat infection [J]. Front Immunol, 2020, 11: 622614.
10
Miron J, Picard C, Frappier J, et al. TLR4 gene expression and pro-inflammatory cytokines in Alzheimer's disease and in response to hippocampal deafferentation in rodents [J]. J Alzheimers Dis, 2018, 63(4): 1547-1556.
11
Squillace S, Salvemini D. Toll-like receptor-mediated neuroinflammation: relevance for cognitive dysfunctions [J]. Trends Pharmacol Sci, 2022, 43(9): 726-739.
12
Duan T, Du Y, Xing C, et al. Toll-like receptor signaling and its role in cell-mediated immunity [J]. Front Immunol, 2022, 13: 812774.
13
Squillace S, Salvemini D. Toll-like receptor-mediated neuroinflammation: relevance for cognitive dysfunctions [J]. Trends Pharmacol Sci, 2022, 43(9): 726-739.
14
Fujikura M, Iwahara N, Hisahara S, et al. CD14 and Toll-like receptor 4 promote fibrillar Aβ42 uptake by microglia through a clathrin-mediated pathway [J]. J Alzheimers Dis, 2019, 68(1): 323-337.
15
Lu J, Zhang C, Lv J, et al. Antiallergic drug desloratadine as a selective antagonist of 5HT2A receptor ameliorates pathology of Alzheimer's disease model mice by improving microglial dysfunction [J]. Aging Cell, 2021, 20(1): e13286.
16
Yousefi N, Sotoodehnejadnematalahi F, Heshmati-Fakhr N, et al. Prestimulation of microglia through TLR4 pathway promotes interferon beta expression in a rat model of Alzheimer's disease [J]. J Mol Neurosci, 2019, 67(4): 495-503.
17
Miron J, Picard C, Lafaille-Magnan , et al. Association of TLR4 with Alzheimer's disease risk and presymptomatic biomarkers of inflammation [J]. Alzheimers Dement, 2019, 15(7): 951-960.
18
He Y, Ruganzu JB, Zheng Q, et al. Silencing of LRP1 exacerbates inflammatory response via TLR4/NF-κB/MAPKs signaling pathways in APP/PS1 transgenic mice [J]. Mol Neurobiol, 2020, 57(9): 3727-3743.
19
Cui W, Sun C, Ma Y, et al. Inhibition of TLR4 induces M2 microglial polarization and provides neuroprotection via the NLRP3 inflammasome in Alzheimer's disease [J]. Front Neurosci, 2020, 14: 444.
20
龙惠萍. TREM2基因在晚发型阿尔茨海默病 (LOAD)中介导炎症调节的机制研究 [D]. 南宁: 广西医科大学, 2020.
21
Jin X, Liu MY, Zhang DF, et al. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway [J]. CNS Neurosci Ther, 2019, 25(5): 575-590.
22
Muhammad T, Ikram M, Ullah R, et al. Hesperetin, a Citrus Flavonoid, attenuates LPS-Induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB Signaling [J]. Nutrients, 2019, 11(3): E648.
23
Yang L, Zhou R, Tong Y, et al. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation [J]. Neurobiol Dis, 2020, 140: 104814.
24
Lourenco MV, Frozza RL, De Freitas GB, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models [J]. Nat Med, 2019, 25(1): 165-175.
25
Blackmore DG, Turpin F, Palliyaguru T, et al. Low-intensity ultrasound restores long-term potentiation and memory in senescent mice through pleiotropic mechanisms including NMDAR signaling [J]. Mol Psychiatry, 2021, 26(11): 6975-6991.
26
Becker MFP, Tetzlaff C. The biophysical basis underlying the maintenance of early phase long-term potentiation [J]. PLoS Comput Biol, 2021, 17(3): e1008813.
27
Hughes C, Choi ML, Yi JH, et al. Beta amyloid aggregates induce sensitised TLR4 signalling causing long-term potentiation deficit and rat neuronal cell death [J]. Commun Biol, 2020, 3(1): 79.
28
Zhou Y, Song WM, Andhey PS, et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer's disease [J]. Nat Med, 2020, 26(1): 131-142.
29
Long H, Zhong G, Wang C, et al. TREM2 attenuates Aβ1-42-mediated neuroinflammation in BV-2 cells by downregulating TLR signaling [J]. Neurochem Res, 2019, 44(8): 1830-1839.
30
Lee CYD, Daggett A, Gu X, et al. Elevated TREM2 gene dosage reprograms microglia responsivity and ameliorates pathological phenotypes in Alzheimer's disease models [J]. Neuron, 2018, 97(5): 1032-1048.e5.
31
Ren M, Zhang M, Zhang X, et al. Hydroxysafflor yellow A inhibits Aβ1-42-induced neuroinflammation by modulating the phenotypic transformation of microglia via TREM2/TLR4/NF-κB pathway in BV-2 cells [J]. Neurochem Res, 2022, 47(3): 748-761.
32
Zhou J, Yu W, Zhang M, et al. Imbalance of microglial TLR4/TREM2 in LPS-treated APP/PS1 transgenic mice: a potential link between Alzheimer's disease and systemic inflammation [J]. Neurochem Res, 2019, 44(5): 1138-1151.
33
Kuwar R, Rolfe A, Di L, et al. A novel inhibitor targeting NLRP3 inflammasome reduces neuropathology and improves cognitive function in Alzheimer's disease transgenic mice [J]. J Alzheimers Dis, 2021, 82(4): 1769-1783.
34
Feng YS, Tan ZX, Wu LY, et al. The involvement of NLRP3 inflammasome in the treatment of Alzheimer's disease [J]. Ageing Res Rev, 2020, 64: 101192.
35
Ising C, Venegas C, Zhang S, et al. NLRP3 inflammasome activation drives tau pathology [J]. Nature, 2019, 575(7784): 669-673.
36
Tejera D, Mercan D, Sanchez-Caro JM, et al. Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome [J]. EMBO J, 2019, 38(17): e101064.
37
Zhang Y, Dong Z, Song W. NLRP3 inflammasome as a novel therapeutic target for Alzheimer's disease [J]. Signal Transduct Target Ther, 2020, 5(1): 37.
38
Zhong X, Liu M, Yao W, et al. Epigallocatechin-3-Gallate attenuates microglial inflammation and neurotoxicity by suppressing the activation of canonical and noncanonical inflammasome via TLR4/NF-κB pathway [J]. Mol Nutr Food Res, 2019, 63(21): e1801230.
39
Liu Y, Dai Y, Li Q, et al. Beta-amyloid activates NLRP3 inflammasome via TLR4 in mouse microglia [J]. Neurosci Lett, 2020, 736: 135279.
40
Yang J, Wise L, Fukuchi KI. TLR4 cross-talk with NLRP3 inflammasome and complement signaling pathways in Alzheimer's disease [J]. Front Immunol, 2020, 11: 724.
41
廖冬梅, 庞芳, 周敏, 等. 基于TLR4/NF-κB/NLRP3通路探讨电针对阿尔茨海默病小鼠认知障碍的影响 [J]. 针刺研究, 2022, 47(7): 565-572.
42
Guan PP, Cao LL, Wang P. Elevating the levels of calcium ions exacerbate Alzheimer's disease via inducing the production and aggregation of β-amyloid protein and phosphorylated Tau [J]. Int J Mol Sci, 2021, 22(11): 5900.
43
Calvo-Rodriguez M, García-Rodríguez C, Villalobos C, et al. Role of Toll like receptor 4 in Alzheimer's disease [J]. Front Immunol, 2020, 11: 1588.
44
Calvo-Rodríguez M, De La Fuente C, García-Durillo M, et al. Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca2+ responses, and neuron cell death in cultured rat hippocampal neurons [J]. J Neuroinflammation, 2017, 14(1): 24.
45
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, et al. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods [J]. J Cell Physiol, 2019, 234(5): 5451-5465.
46
Samadian M, Gholipour M, Hajiesmaeili M, et al. The eminent role of microRNAs in the pathogenesis of Alzheimer's disease [J]. Front Aging Neurosci, 2021, 13: 641080.
47
Bayraktar R, Bertilaccio MTS, Calin GA. The interaction between two worlds: microRNAs and Toll-like receptors [J]. Front Immunol, 2019, 10: 1053.
48
Mai H, Fan W, Wang Y, et al. Intranasal Administration of miR-146a Agomir rescued the pathological process and cognitive impairment in an AD mouse model [J]. Mol Ther Nucleic Acids, 2019, 18: 681-695.
49
Yang J, Malone F, Go M, et al. Lipopolysaccharide-Induced Exosomal miR-146a is involved in altered expression of Alzheimer's risk genes via suppression of TLR4 signaling [J]. J Mol Neurosci, 2021, 71(6): 1245-1255.
50
Wang M, Cao J, Gong C, et al. Exploring the microbiota-Alzheimer's disease linkage using short-term antibiotic treatment followed by fecal microbiota transplantation [J]. Brain Behav Immun, 2021, 96: 227-238.
51
Bruning EE, Coller JK, Wardill HR, et al. Site-specific contribution of Toll-like receptor 4 to intestinal homeostasis and inflammatory disease [J]. J Cell Physiol, 2021, 236(2): 877-888.
52
Keogh CE, Rude KM, Gareau MG. Role of pattern recognition receptors and the microbiota in neurological disorders [J]. J Physiol, 2021, 599(5): 1379-1389.
53
Liu S, Gao J, Zhu M, et al. Gut Microbiota and Dysbiosis in Alzheimer's disease: implications for pathogenesis and treatment [J]. Mol Neurobiol, 2020, 57(12): 5026-5043.
54
Lin C, Zhao S, Zhu Y, et al. Microbiota-gut-brain axis and Toll-like receptors in Alzheimer's disease [J]. Comput Struct Biotechnol J, 2019, 17: 1309-1317.
55
Yang X, Yu D, Xue L, et al. Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice [J]. Acta Pharm Sin B, 2020, 10(3): 475-487.
56
Ye T, Yuan S, Kong Y, et al. Effect of probiotic fungi against cognitive impairment in mice via regulation of the fungal microbiota-gut-brain axis [J]. J Agric Food Chem, 2022, 70(29): 9026-9038.
[1] 李磊, 吴昊, 吴良绍. 关节镜下膝骨关节炎特征与微小RNA-27a的相关性[J]. 中华关节外科杂志(电子版), 2022, 16(01): 16-21.
[2] 徐纪文, 徐静雅, 宗斌, 马爽. COPD并发肺部感染TLR4/NF-κB通路与细胞因子水平及意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 221-223.
[3] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[4] 罗洁, 李杰. 早产儿脑损伤与血清中Tau、TLR4变化水平的关系研究[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 346-350.
[5] 王洋洋, 高谋, 徐如祥. 过敏毒素、小胶质以及神经干细胞在神经炎症和神经再生中的作用[J]. 中华神经创伤外科电子杂志, 2021, 07(04): 193-198.
[6] 郭翃江, 符雪彩, 朱妍妍, 严之红, 王丽娜, 纪红. 基于影响因素的老年阿尔茨海默病认知功能障碍预测模型构建及电子化认知康复训练的应用价值[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 156-161.
[7] 李敏, 刘云. 血清SAA、sNFL水平对老年阿尔茨海默病的预测价值分析[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(03): 157-161.
[8] 中国医师协会神经内科医师分会, 阿尔茨海默病药物临床试验写作组. 阿尔茨海默病药物临床试验中国专家共识[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(01): 9-20.
[9] 李嘉辰, 刘献增. 经颅磁刺激在阿尔茨海默病诊断及治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(04): 308-312.
[10] 刘倩, 李鑫, 刘欣, 苑金香. 铁死亡在阿尔茨海默病发病机制中的研究进展[J]. 中华诊断学电子杂志, 2022, 10(03): 211-215.
[11] 夏禹, 刘寒, 朱瑞. 阿尔茨海默病及相关认知障碍疾病与早老素2基因相关性的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 290-293.
[12] 高海杰, 王宝军. TLR4信号通路与神经系统疾病关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 61-65.
[13] 宋蕾, 吴寒, 侯双兴, 楼菁菁, 刘兴党. 关于阿尔茨海默病中视网膜和视神经及相关物质的研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(05): 351-355.
[14] 刘扬, 张锐毅, 张艳, 李红敏, 苏秋羊, 薛孟周. 细胞外基质金属蛋白酶诱导因子在脑卒中中的作用[J]. 中华脑血管病杂志(电子版), 2022, 16(01): 57-60.
[15] 周英奕, 时晶, 魏明清, 倪敬年, 李婷, 张立苹, 谭中建, 田金洲. 基于动脉自旋磁共振技术探讨阿尔茨海默病脑血流特点与认知功能的关系[J]. 中华脑血管病杂志(电子版), 2021, 15(05): 302-307.
阅读次数
全文


摘要