切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 510 -517. doi: 10.11817/j.issn.1673-9248.2023.05.015

综述

菌群-肠道-脑轴与缺血性卒中危险因素关系的研究进展
金泽平, 董晶, 柳云鹏, 汪阳()   
  1. 100020 首都医科大学附属北京朝阳医院神经外科
    100049 北京,清华大学玉泉医院(清华大学中西医结合医院)装备办
  • 收稿日期:2022-12-01 出版日期:2023-10-01
  • 通信作者: 汪阳
  • 基金资助:
    首都医科大学附属北京朝阳医院金种子基金资助项目(CYJZ202124)

Correlation between microbiota-gut-brain axis and the risk factors of ischemic stroke

Zeping Jin, Jing Dong, Yunpeng Liu, Yang Wang()   

  1. Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
    Yuquan Hospital, Tsinghua University, Beijing 100049, China
  • Received:2022-12-01 Published:2023-10-01
  • Corresponding author: Yang Wang
引用本文:

金泽平, 董晶, 柳云鹏, 汪阳. 菌群-肠道-脑轴与缺血性卒中危险因素关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 510-517.

Zeping Jin, Jing Dong, Yunpeng Liu, Yang Wang. Correlation between microbiota-gut-brain axis and the risk factors of ischemic stroke[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2023, 17(05): 510-517.

缺血性卒中(IS)是目前全球最常见的神经系统疾病之一,其常见的危险因素为高血压、糖尿病、肥胖、衰老、血栓及粥样斑块形成等,这些危险因素可导致IS患者预后不佳。肠道菌群在近年来备受关注,着眼于菌群-肠道-脑轴的研究通过揭示肠道菌群、胃肠道及中枢神经系统之间的交互作用,从而发现肠道菌群与神经系统疾病的内在联系,最终可能揭示神经系统疾病发生发展的机制并寻求新的治疗潜在靶点。目前,越来越多的研究着眼于肠道菌群与IS相关危险因素之间的联系,发现菌群-肠道-脑轴在IS的发病过程中具有重要作用。本文就肠道菌群失调与IS相关危险因素之间的相互作用进行文献综述,以期为揭示IS发生发展的机制及寻找潜在的治疗方式提供更全面的视角及思路。

Ischemic stroke (IS) is one of the most common neurological disease worldwide today. The risk factors of IS, such as hypertension, diabetes, obesity, aging, and formation of thrombus and atheromatous plaque, are demonstrated to be able to lead to poor prognosis of patients. The gut microbiota has attracted more attention in recent years, and the study focused on microbiota-gut-brain axis might help to reveal the mechanisms of the neurological and new therapeutic targets of IS. The microbiota-gut-brain axis describes the crosstalk between the gut microbiota, intestine, and center nervous system. At present, an increasingly number of studies have started to focus on the correlation between gut microbiota and risk factors of IS, indicating that the microbiota-gut-brain axis plays an important role in the pathogenesis of IS. This article reviews studies of how the gut microbiota alterations affect the progression of these risk factors, and how the onset of the risk factors would change the composition of gut microbiota. The primary purpose of the current study is to provide more comprehensive perspectives and collective ideas, in order to encourage more potential treatment for IS based on the microbiota-gut-brain axis.

图1 肠道菌群失调与IS危险因素的相互作用关系。IS相关危险因素,如高血压、糖尿病、心脏疾病、衰老以及吸烟,可改变肠道菌群组成导致肠道菌群失调,同时失调的肠道菌群可通过促使SCFA、TMAO升高或促进炎症反应等途径促进IS相关危险因素的发生发展 注:IS为缺血性卒中;SCFA为短链脂肪酸;TMAO为氧化三甲胺;IL-6为白介素-6;IL-13为白介素-13;TNF-α为肿瘤坏死因子-α;p65 NF-κB为人核转录因子-κB亚基p65
1
Favate AS, Younger DS. Epidemiology of ischemic stroke [J]. Neurol Clin, 2016, 34(4): 967-980.
2
Pan Y, Song T, Chen R, et al. Socioeconomic deprivation and mortality in people after ischemic stroke: the China National Stroke Registry [J]. Int J Stroke, 2016, 11(5): 557-564.
3
Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association [J]. Circulation, 2021, 143(8): e254-e743.
4
马林, 巢宝华, 曹雷, 等. 2007—2017年中国脑卒中流行趋势及特征分析 [J/OL]. 中华脑血管病杂志(电子版), 2020, 14(5): 253-258.
5
樊泽新, 刘广志. 缺血性卒中免疫学研究进展 [J]. 中国现代神经疾病杂志, 2022, 22(1): 46-53.
6
Demaerschalk BM, Hwang HM, Leung G. US cost burden of ischemic stroke: a systematic literature review [J]. Am J Manag Care, 2010, 16(7): 525-533.
7
Ma Z, Deng G, Meng Z, et al. Hospitalization expenditures and out-of-pocket expenses in patients with stroke in Northeast China, 2015-2017: a pooled cross-sectional study [J]. Front Pharmacol, 2020, 11: 596183.
8
Jovin TG, Chamorro A, Cobo E, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke [J]. N Engl J Med, 2015, 372(24): 2296-2306.
9
Balodis A, Radzina M, Miglane E, et al. Endovascular thrombectomy in anterior circulation stroke and clinical value of bridging with intravenous thrombolysis [J]. Acta Radiol, 2019, 60(3): 308-314.
10
Flottmann F, Leischner H, Broocks G, et al. Recanalization rate per retrieval attempt in mechanical thrombectomy for acute ischemic stroke [J]. Stroke, 2018, 49(10): 2523-2525.
11
Leischner H, Flottmann F, Hanning U, et al. Reasons for failed endovascular recanalization attempts in stroke patients [J]. J Neurointerv Surg, 2019, 11(5): 439-442.
12
Bustamante A, Simats A, Vilar-Bergua A, et al. Blood/brain biomarkers of inflammation after stroke and their association with outcome: from C-reactive protein to damage-associated molecular patterns [J]. Neurotherapeutics, 2016, 13(4): 671-684.
13
Gauberti M, De Lizarrondo SM, Vivien D. The "inflammatory penumbra" in ischemic stroke: from clinical data to experimental evidence [J]. Eur Stroke J, 2016, 1(1): 20-27.
14
Xie L, Li W, Hersh J, et al. Experimental ischemic stroke induces long-term T cell activation in the brain [J]. J Cereb Blood Flow Metab, 2019, 39(11): 2268-2276.
15
Santamaría-Cadavid M, Rodríguez-Castro E, Rodríguez-Yáñez M, et al. Regulatory T cells participate in the recovery of ischemic stroke patients [J]. BMC Neurol, 2020, 20(1): 68.
16
Diaz Heijtz R, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior [J]. Proc Natl Acad Sci U S A, 2011, 108(7): 3047-3052.
17
Mohajeri MH, La Fata G, Steinert RE, et al. Relationship between the gut microbiome and brain function [J]. Nutr Rev, 2018, 76(7): 481-496.
18
Forsythe P, Bienenstock J, Kunze WA. Vagal pathways for microbiome-brain-gut axis communication [J]. Adv Exp Med Biol, 2014, 817: 115-133.
19
Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease [J]. Nat Neurosci, 2017, 20(2): 145-155.
20
Singh A, Zapata RC, Pezeshki A, et al. Host genetics and diet composition interact to modulate gut microbiota and predisposition to metabolic syndrome in spontaneously hypertensive stroke-prone rats [J]. FASEB J, 2019, 33(6): 6748-6766.
21
Dan X, Mushi Z, Baili W, et al. Differential analysis of hypertension-associated intestinal microbiota [J]. Int J Med Sci, 2019, 16(6): 872-881.
22
Calderón-Pérez L, Llauradó E, Companys J, et al. Interplay between dietary phenolic compound intake and the human gut microbiome in hypertension: a cross-sectional study [J]. Food Chem, 2021, 344: 128567.
23
Yang T, Santisteban MM, Rodriguez V, et al. Gut dysbiosis is linked to hypertension [J]. Hypertension, 2015, 65(6): 1331-1340.
24
Zhang Z, Zhao J, Tian C, et al. Targeting the gut microbiota to investigate the mechanism of lactulose in negating the effects of a high-salt diet on hypertension [J]. Mol Nutr Food Res, 2019, 63(11): e1800941.
25
Bier A, Braun T, Khasbab R, et al. A high salt diet modulates the gut microbiota and short chain fatty acids production in a salt-sensitive hypertension rat model [J]. Nutrients, 2018, 10(9): 1154.
26
Chang Y, Chen Y, Zhou Q, et al. Short-chain fatty acids accompanying changes in the gut microbiome contribute to the development of hypertension in patients with preeclampsia [J]. Clin Sci (Lond), 2020, 134(2): 289-302.
27
陈杰, 陈宣颖, 孙立勤, 等. 宁波地区盐敏感性高血压患者基于16s rRNA检测肠道菌群的特征分析 [J]. 现代实用医学, 2021, 33(11): 1458-14591458-1459, 1463, F0004.
28
Dalile B, Van Oudenhove L, Vervliet B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication [J]. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 461-478.
29
Grylls A, Seidler K, Neil J. Link between microbiota and hypertension: focus on LPS/TLR4 pathway in endothelial dysfunction and vascular inflammation, and therapeutic implication of probiotics [J]. Biomed Pharmacother, 2021, 137: 111334.
30
Li J, Zhao F, Wang Y, et al. Gut microbiota dysbiosis contributes to the development of hypertension [J]. Microbiome, 2017, 5(1): 14.
31
Nie J, Xie L, Zhao BX, et al. Serum trimethylamine N-Oxide concentration is positively associated with first stroke in hypertensive patients [J]. Stroke, 2018, 49(9): 2021-2028.
32
Meschia JF, Bushnell C, Boden-Albala B, et al. Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association [J]. Stroke, 2014, 45(12): 3754-3832.
33
Mitchell AB, Cole JW, Mcardle PF, et al. Obesity increases risk of ischemic stroke in young adults [J]. Stroke, 2015, 46(6): 1690-1692.
34
Park H, Lee HW, Yoo J, et al. Body mass index and prognosis in ischemic stroke patients with type 2 diabetes mellitus [J]. Front Neurol, 2019, 10: 563.
35
Bailey RR, Serra MC, Mcgrath RP. Obesity and diabetes are jointly associated with functional disability in stroke survivors [J]. Disabil Health J, 2020, 13(3): 100914.
36
Deutsch C, Portik-Dobos V, Smith AD, et al. Diet-induced obesity causes cerebral vessel remodeling and increases the damage caused by ischemic stroke [J]. Microvasc Res, 2009, 78(1): 100-106.
37
Sedighi M, Razavi S, Navab-Moghadam F, et al. Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals [J]. Microb Pathog, 2017, 111: 362-369.
38
Pellegrini S, Sordi V, Bolla AM, et al. Duodenal mucosa of patients with type 1 diabetes shows distinctive inflammatory profile and microbiota [J]. J Clin Endocrinol Metab, 2017, 102(5): 1468-1477.
39
Mønsted , Falck ND, Pedersen K, et al. Intestinal permeability in type 1 diabetes: an updated comprehensive overview [J]. J Autoimmun, 2021, 122: 102674.
40
Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest [J]. Nature, 2006, 444(7122): 1027-1031.
41
Oberbach A, Haange SB, Schlichting N, et al. Metabolic in vivo labeling highlights differences of metabolically active microbes from the mucosal gastrointestinal microbiome between high-fat and normal chow diet [J]. J Proteome Res, 2017, 16(4): 1593-1604.
42
Nagpal R, Newman TM, Wang S, et al. Obesity-linked gut microbiome dysbiosis associated with derangements in gut permeability and intestinal cellular homeostasis independent of diet [J]. J Diabetes Res, 2018, 2018: 3462092.
43
Beaumont M, Goodrich JK, Jackson MA, et al. Heritable components of the human fecal microbiome are associated with visceral fat [J]. Genome Biol, 2016, 17(1): 189.
44
Liu R, Hong J, Xu X, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention [J]. Nat Med, 2017, 23(7): 859-868.
45
赵丹. 学龄前肥胖儿童肠道菌群分布特点及其相关因素分析 [J]. 中国中西医结合儿科学, 2021, 13(1): 69-71.
46
Macfarlane GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics [J]. J Clin Gastroenterol, 2011, 45 Suppl: S120-S127.
47
Chang PV, Hao L, Offermanns S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition [J]. Proc Natl Acad Sci U S A, 2014, 111(6): 2247-2252.
48
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells [J]. Nature, 2013, 504(7480): 446-450.
49
Wang H, Hou L, Kwak D, et al. Increasing regulatory t cells with interleukin-2 and interleukin-2 antibody complexes attenuates lung inflammation and heart failure progression [J]. Hypertension, 2016, 68(1): 114-122.
50
徐敏, 党少华, 辛宁. 2型糖尿病患者肠道菌群水平与IL-6、TNF-α、HOMA-IR水平的相关性 [J]. 中国民康医学, 2022, 34(10): 8-108-10, 14.
51
景乐乐, 王中群, 胡惠林. 肠道菌群代谢物TMAO对糖尿病冠状动脉钙化的预测价值 [J]. 中南医学科学杂志, 2022, 50(1): 17-20.
52
Torres-Fuentes C, Schellekens H, Dinan TG, et al. A natural solution for obesity: bioactives for the prevention and treatment of weight gain. A review [J]. Nutr Neurosci, 2015, 18(2): 49-65.
53
Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome [J]. Nature, 2016, 534(7606): 213-217.
54
Kapral MK, Fang J, Alibhai SM, et al. Risk of fractures after stroke: results from the Ontario Stroke Registry [J]. Neurology, 2017, 88(1): 57-64.
55
Khan SU, Khan MZ, Khan MU, et al. Clinical and economic burden of stroke among young, midlife, and older adults in the United States, 2002-2017 [J]. Mayo Clin Proc Innov Qual Outcomes, 2021, 5(2): 431-441.
56
Spychala MS, Venna VR, Jandzinski M, et al. Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome [J]. Ann Neurol, 2018, 84(1): 23-36.
57
Rahayu ES, Utami T, Mariyatun M, et al. Gut microbiota profile in healthy Indonesians [J]. World J Gastroenterol, 2019, 25(12): 1478-1491.
58
Jeffery IB, Lynch DB, O'toole PW. Composition and temporal stability of the gut microbiota in older persons [J]. ISME J, 2016, 10(1): 170-182.
59
Yu L, Meng G, Huang B, et al. A potential relationship between gut microbes and atrial fibrillation: trimethylamine N-oxide, a gut microbe-derived metabolite, facilitates the progression of atrial fibrillation [J]. Int J Cardiol, 2018, 255: 92-98.
60
Xu DJ, Wang KC, Yuan LB, et al. Compositional and functional alterations of gut microbiota in patients with stroke [J]. Nutr Metab Cardiovasc Dis, 2021, 31(12): 3434-3448.
61
Antinozzi M, Giffi M, Sini N, et al. Cigarette smoking and human gut microbiota in healthy adults: a systematic review [J]. Biomedicines, 2022, 10(2): 510.
62
Gui X, Yang Z, Li MD. Effect of cigarette smoke on gut microbiota: state of knowledge [J]. Front Physiol, 2021, 12: 673341.
63
Shanahan ER, Shah A, Koloski N, et al. Influence of cigarette smoking on the human duodenal mucosa-associated microbiota [J]. Microbiome, 2018, 6(1): 150.
64
许春平, 赵爱景, 荆晓艳, 等. 卷烟烟气对小鼠肠道菌群及口腔菌群的影响 [J]. 烟草科技, 2012, (9): 71-7481.
65
Huart J, Leenders J, Taminiau B, et al. Gut microbiota and fecal levels of short-chain fatty acids differ upon 24-hour blood pressure levels in men [J]. Hypertension, 2019, 74(4): 1005-1013.
66
Robles-Vera I, Toral M, De La Visitación N, et al. Probiotics prevent dysbiosis and the rise in blood pressure in genetic hypertension: role of short-chain fatty acids [J]. Mol Nutr Food Res, 2020, 64(6): e1900616.
67
Yan X, Jin J, Su X, et al. Intestinal flora modulates blood pressure by regulating the synthesis of intestinal-derived corticosterone in high salt-induced hypertension [J]. Circ Res, 2020, 126(7): 839-853.
68
Chen Z, Guo L, Zhang Y, et al. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity [J]. J Clin Invest, 2014, 124(8): 3391-3406.
69
Razmpoosh E, Javadi A, Ejtahed HS, et al. The effect of probiotic supplementation on glycemic control and lipid profile in patients with type 2 diabetes: a randomized placebo controlled trial [J]. Diabetes Metab Syndr, 2019, 13(1): 175-182.
70
Hoving LR, Katiraei S, Heijink M, et al. Dietary mannan oligosaccharides modulate gut microbiota, increase fecal bile acid excretion, and decrease plasma cholesterol and atherosclerosis development [J]. Mol Nutr Food Res, 2018, 62(10): e1700942.
71
Vulevic J, Juric A, Tzortzis G, et al. A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults [J]. J Nutr, 2013, 143(3): 324-331.
72
Lee J, D'aigle J, Atadja L, et al. Gut microbiota-derived short-chain fatty acids promote poststroke recovery in aged mice [J]. Circ Res, 2020, 127(4): 453-465.
73
Ahmadi S, Wang S, Nagpal R, et al. A human-origin probiotic cocktail ameliorates aging-related leaky gut and inflammation via modulating the microbiota/taurine/tight junction axis [J]. JCI Insight, 2020, 5(9): e132055.
74
Zhang Y, Zhang S, Li B, et al. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome [J]. Cardiovasc Res, 2022, 118(3): 785-797.
75
Chen Q, Liu M, Zhang P, et al. Fucoidan and galactooligosaccharides ameliorate high-fat diet-induced dyslipidemia in rats by modulating the gut microbiota and bile acid metabolism [J]. Nutrition, 2019, 65: 50-59.
76
Tadic M, Ivanovic B, Cuspidi C. What do we currently know about metabolic syndrome and atrial fibrillation? [J]. Clin Cardiol, 2013, 36(11): 654-662.
[1] 刘欢颜, 华扬, 贾凌云, 赵新宇, 刘蓓蓓. 颈内动脉闭塞病变管腔结构和血流动力学特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 809-815.
[2] 马艳波, 华扬, 刘桂梅, 孟秀峰, 崔立平. 中青年人颈动脉粥样硬化病变的相关危险因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 822-826.
[3] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[4] 吴方园, 孙霞, 林昌锋, 张震生. HBV相关肝硬化合并急性上消化道出血的危险因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 45-47.
[5] 陈旭渊, 罗仕云, 李文忠, 李毅. 腺源性肛瘘经手术治疗后创面愈合困难的危险因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 82-85.
[6] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[7] 莫闲, 杨闯. 肝硬化患者并发门静脉血栓危险因素的Meta分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 678-683.
[8] 侯超, 潘美辰, 吴文明, 黄兴广, 李翔, 程凌雪, 朱玉轩, 李文波. 早期食管癌及上皮内瘤变内镜黏膜下剥离术后食管狭窄的危险因素[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 383-387.
[9] 张雯, 宋牡丹, 邓雪婷, 张云. 强化营养支持辅助奥曲肽治疗肝硬化合并食管胃底静脉曲张破裂出血的疗效及再出血危险因素[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 456-460.
[10] 陆猛桂, 黄斌, 李秋林, 何媛梅. 蜂蛰伤患者发生多器官功能障碍综合征的危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1010-1015.
[11] 李达, 张大涯, 陈润祥, 张晓冬, 黄士美, 陈晨, 曾凡, 陈世锔, 白飞虎. 海南省东方市幽门螺杆菌感染现状的调查与相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 858-864.
[12] 李琪, 黄钟莹, 袁平, 关振鹏. 基于某三级医院的ICU多重耐药菌医院感染影响因素的分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 777-782.
[13] 孟科, 李燕, 闫婧爽, 闫斌. 胶囊内镜胃通过时间的影响因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 671-675.
[14] 杨艳丽, 陈昱, 赵若辰, 杜伟, 马海娟, 许珂, 张莉芸. 系统性红斑狼疮合并血流感染的危险因素及细菌学分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 694-699.
[15] 孙培培, 张二明, 时延伟, 赵春燕, 宋萍萍, 张硕, 张克, 周玉娇, 赵璨, 闫维, 吴蓉菊, 宋丽萍, 郭伟安, 马石头, 安欣华, 包曹歆, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病患病情况及相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 711-719.
阅读次数
全文


摘要