切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 518 -521. doi: 10.11817/j.issn.1673-9248.2023.05.016

综述

亚低温治疗脑梗死机制的研究进展
邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛()   
  1. 518020 深圳,暨南大学第二临床医学院神经内科;518020 深圳,深圳市老年疾病临床医学研究中心
  • 收稿日期:2023-04-23 出版日期:2023-10-01
  • 通信作者: 何奕涛
  • 基金资助:
    国家自然科学基金面上项目(82071463)

Research progress on the mechanism of mild hypothermia therapy for cerebral infarction

Tian Qiu, Miaojuan Yang, Bo Hu, Yi Guo, Yitao He()   

  1. Department of Neurology, the Second Clinical Medical College of Jinan University, Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen 518020, China
  • Received:2023-04-23 Published:2023-10-01
  • Corresponding author: Yitao He
引用本文:

邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.

Tian Qiu, Miaojuan Yang, Bo Hu, Yi Guo, Yitao He. Research progress on the mechanism of mild hypothermia therapy for cerebral infarction[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2023, 17(05): 518-521.

亚低温治疗被推荐应用于急性大面积脑梗死。对于亚低温治疗对脑梗死的相关作用机制,近年来在抗神经细胞凋亡、维持细胞线粒体功能、调节细胞自噬、调控非编码RNA的表达、抗炎症反应等方面有一定的研究进展,本文就亚低温治疗脑梗死机制的研究进展进行综述,以推动亚低温在脑梗死治疗中的应用。

Mild hypothermia therapy had been recommended for acute massive cerebral infarction. In recent years, there has been some research progress on the mechanism of mild hypothermia therapy on cerebral infarction, including anti-apoptosis, maintenance of mitochondrial function, regulation of autophagy, regulation of expression of non-coding RNA, and anti-inflammation effect. In order to promote the application of mild hypothermia therapy in the treatment of cerebral infarction, this paper reviewed the research progress on the mechanism of mild hypothermia therapy.

1
Tu WJ, Zhao Z, Yin P, et al. Estimated burden of stroke in China in 2020 [J]. JAMA Netw Open, 2023, 6(3): e231455.
2
中国医学会神经病学分会神经重症协助组. 神经重症低温治疗中国专家共识 [J]. 中华神经科杂志, 2015, 48(6): 453-458.
3
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications [J]. Med Res Rev, 2022, 42(1): 259-305.
4
Zhou T, Jiang J, Zhang M, et al. Protective effect of mild hypothermia on oxygen-glucose deprivation injury in rat hippocampal neurons after hypoxia [J]. Mol Med Rep, 2013, 7(6): 1859-1864.
5
Zhou T, Lin H, Jiang L, et al. Mild hypothermia protects hippocampal neurons from oxygen-glucose deprivation injury through inhibiting caspase-3 activation [J]. Cryobiology, 2018, 80: 55-61.
6
Li J, Cai D, Yao X, et al. Protective effect of ginsenoside Rg1 on hematopoietic stem/progenitor cells through attenuating oxidative stress and the Wnt/β-catenin signaling pathway in a mouse model of d-Galactose-induced aging [J]. Int J Mol Sci, 2016, 17(6): 849.
7
Zhou T, Liang Y, Jiang L, et al. Mild hypothermia protects against oxygen glucose deprivation/reoxygenation-induced apoptosis via the Wnt/beta-catenin signaling pathway in hippocampal neurons [J]. Biochem Biophys Res Commun, 2017, 486(4): 1005-1013.
8
Liu X, Li F, Zhao S, et al. MicroRNA-124-mediated regulation of inhibitory member of apoptosis-stimulating protein of p53 family in experimental stroke [J]. Stroke, 2013, 44(7): 1973-1980.
9
Liu X, Wen S, Zhao S, et al. Mild therapeutic hypothermia protects the brain from ischemia/reperfusion injury through upregulation of iASPP [J]. Aging Dis, 2018, 9(3): 401-411.
10
Li T, Zhang L, Jin C, et al. Pomegranate flower extract bidirectionally regulates the proliferation, differentiation and apoptosis of 3T3-L1 cells through regulation of PPARγ expression mediated by PI3K-AKT signaling pathway [J]. Biomed Pharmacother, 2020, 131: 110769.
11
Gao Z, Zhang Z, Bian Q, et al. Mild hypothermia protects rat cortical neurons against oxygen-glucose deprivation/reoxygenation injury via the PI3K/Akt pathway [J]. Neuroreport, 2021, 32(4): 312-320.
12
Galluzzi L, Kepp O, Kroemer G. Mitochondrial regulation of cell death: a phylogenetically conserved control [J]. Microb Cell, 2016, 3(3): 101-108.
13
Chang CY, Liang MZ, Chen L. Current progress of mitochondrial transplantation that promotes neuronal regeneration [J]. Transl Neurodegener, 2019, 8: 17.
14
Hayakawa K, Esposito E, Wang X, et al. Transfer of mitochondria from astrocytes to neurons after stroke [J]. Nature, 2016, 535(7613): 551-555.
15
Li X, Li Y, Zhang Z, et al. Mild hypothermia facilitates mitochondrial transfer from astrocytes to injured neurons during oxygen-glucose deprivation/reoxygenation [J]. Neurosci Lett, 2021, 756: 135940.
16
Wei W, Wu D, Duan Y, et al. Neuroprotection by mesenchymal stem cell (MSC) administration is enhanced by local cooling infusion (LCI) in ischemia [J]. Brain Res, 2019, 1724: 146406.
17
Russo E, Nguyen H, Lippert T, et al. Mitochondrial targeting as a novel therapy for stroke [J]. Brain Circ, 2018, 4(3): 84-94.
18
Tang YN, Zhang GF, Chen HL, et al. Selective brain hypothermia-induced neuroprotection against focal cerebral ischemia/reperfusion injury is associated with Fis1 inhibition [J]. Neural Regen Res, 2020, 15(5): 903-911.
19
Sosunov S, Bhutada A, Niatsetskaya Z, et al. Mitochondrial calcium buffering depends upon temperature and is associated with hypothermic neuroprotection against hypoxia-ischemia injury [J]. PLoS One, 2022, 17(8): e0273677.
20
Vargas JNS, Hamasaki M, Kawabata T, et al. The mechanisms and roles of selective autophagy in mammals [J]. Nat Rev Mol Cell Biol, 2023, 24(3): 167-185.
21
Zhang Y, Cao Y, Liu C. Autophagy and Ischemic Stroke [J]. Adv Exp Med Biol, 2020, 1207: 111-134.
22
Mo Y, Sun YY, Liu KY. Autophagy and inflammation in ischemic stroke [J]. Neural Regen Res, 2020, 15(8): 1388-1396.
23
Zhou T, Liang L, Liang Y, et al. Mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury by improving lysosomal function and autophagic flux [J]. Exp Cell Res, 2017, 358(2): 147-160.
24
Tu Y, Guo C, Song F, et al. Mild hypothermia alleviates diabetes aggravated cerebral ischemic injury via activating autophagy and inhibiting pyroptosis [J]. Brain Res Bull, 2019, 150: 1-12.
25
Chen W, Sun Y, Liu K, et al. Autophagy: a double-edged sword for neuronal survival after cerebral ischemia [J]. Neural Regen Res, 2014, 9(12): 1210-1216.
26
Song F, Guo C, Geng Y, et al. Therapeutic time window and regulation of autophagy by mild hypothermia after intracerebral hemorrhage in rats [J]. Brain Res, 2018, 1690: 12-22.
27
Saugstad JA. Non-coding RNAs in stroke and neuroprotection [J]. Front Neurol, 2015, 6: 50.
28
Liu X, Wu D, Wen S, et al. Mild therapeutic hypothermia protects against cerebral ischemia/reperfusion injury by inhibiting miR-15b expression in rats [J]. Brain Circ, 2017, 3(4): 219-226.
29
Zhao S, Liu X, Kang J, et al. Analysis of microRNA expression in cerebral ischemia/reperfusion after mild therapeutic hypothermia treatment in rats [J]. Ann Transl Med, 2021, 9(2): 168.
30
Liu L, Liu X, Wang R, et al. Mild focal hypothermia regulates the dynamic polarization of microglia after ischemic stroke in mice [J]. Neurol Res, 2018, 40(6): 508-515.
31
Kim JY, Kim JH, Park J, et al. Targeted temperature management at 36 degrees C shows therapeutic effectiveness via alteration of microglial activation and polarization after ischemic stroke [J]. Transl Stroke Res, 2022, 13(1): 132-141.
32
Liu L, Liu J, Li M, et al. Selective brain hypothermia attenuates focal cerebral ischemic injury and improves long-term neurological outcome in aged female mice [J]. CNS Neurosci Ther, 2023, 29(1): 129-139.
33
Sun H, Cai J, Shen S, et al. Hypothermia treatment ameliorated cyclin-dependent kinase 5-mediated inflammation in ischemic stroke and improved outcomes in ischemic stroke patients [J]. Clinics (Sao Paulo), 2019, 74: e938.
34
Arunachalam P, Ludewig P, Melich P, et al. CCR6 (CC chemokine receptor 6) is essential for the migration of detrimental natural interleukin-17-producing gammadelta T cells in stroke [J]. Stroke, 2017, 48(7): 1957-1965.
35
Cai H, Ma X, Lu D, et al. Mild hypothermia promotes ischemic tolerance and survival of neural stem cell grafts by enhancing global SUMOylation [J]. Oxid Med Cell Longev, 2022, 2022: 6503504.
[1] 刘伟, 牛云峰, 安杰. LINC01232 通过miR-516a-5p/BCL9 轴促进三阴性乳腺癌的恶性进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 330-338.
[2] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[3] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[4] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[5] 李争光, 宰爽嘉, 吴火峰, 孙华, 张永博, 陈浏阳, 戴睿, 张亮. 昼夜节律相关因子在椎间盘退行性变发病机制中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 457-461.
[6] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[7] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[8] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[9] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[10] 谢井伟, 王森, 王非, 郭永坤. STA-MCA血管搭桥术治疗烟雾病[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 318-320.
[11] 李刚, 潘晓帆, 田雪, 刘路路. CT灌注成像参数及血栓弹力图对急性前循环脑梗死早期神经功能恶化的预测价值分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 226-232.
[12] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[13] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[14] 克地尔牙·马合木提, 胡波, 杨琼, 闫素, 胡岚卿, 高沛沛, 姚恩生. 依达拉奉右莰醇对急性脑梗死后认知功能障碍的疗效观察[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 459-466.
[15] 刘焕亮, 崔慧娟, 曹慧, 付源. 颈动脉狭窄处剪切率对高同型半胱氨酸血症患者脑梗死的预测价值[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(04): 317-322.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?