切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 518 -521. doi: 10.11817/j.issn.1673-9248.2023.05.016

综述

亚低温治疗脑梗死机制的研究进展
邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛()   
  1. 518020 深圳,暨南大学第二临床医学院神经内科;518020 深圳,深圳市老年疾病临床医学研究中心
  • 收稿日期:2023-04-23 出版日期:2023-10-01
  • 通信作者: 何奕涛
  • 基金资助:
    国家自然科学基金面上项目(82071463)

Research progress on the mechanism of mild hypothermia therapy for cerebral infarction

Tian Qiu, Miaojuan Yang, Bo Hu, Yi Guo, Yitao He()   

  1. Department of Neurology, the Second Clinical Medical College of Jinan University, Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen 518020, China
  • Received:2023-04-23 Published:2023-10-01
  • Corresponding author: Yitao He
引用本文:

邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.

Tian Qiu, Miaojuan Yang, Bo Hu, Yi Guo, Yitao He. Research progress on the mechanism of mild hypothermia therapy for cerebral infarction[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2023, 17(05): 518-521.

亚低温治疗被推荐应用于急性大面积脑梗死。对于亚低温治疗对脑梗死的相关作用机制,近年来在抗神经细胞凋亡、维持细胞线粒体功能、调节细胞自噬、调控非编码RNA的表达、抗炎症反应等方面有一定的研究进展,本文就亚低温治疗脑梗死机制的研究进展进行综述,以推动亚低温在脑梗死治疗中的应用。

Mild hypothermia therapy had been recommended for acute massive cerebral infarction. In recent years, there has been some research progress on the mechanism of mild hypothermia therapy on cerebral infarction, including anti-apoptosis, maintenance of mitochondrial function, regulation of autophagy, regulation of expression of non-coding RNA, and anti-inflammation effect. In order to promote the application of mild hypothermia therapy in the treatment of cerebral infarction, this paper reviewed the research progress on the mechanism of mild hypothermia therapy.

1
Tu WJ, Zhao Z, Yin P, et al. Estimated burden of stroke in China in 2020 [J]. JAMA Netw Open, 2023, 6(3): e231455.
2
中国医学会神经病学分会神经重症协助组. 神经重症低温治疗中国专家共识 [J]. 中华神经科杂志, 2015, 48(6): 453-458.
3
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications [J]. Med Res Rev, 2022, 42(1): 259-305.
4
Zhou T, Jiang J, Zhang M, et al. Protective effect of mild hypothermia on oxygen-glucose deprivation injury in rat hippocampal neurons after hypoxia [J]. Mol Med Rep, 2013, 7(6): 1859-1864.
5
Zhou T, Lin H, Jiang L, et al. Mild hypothermia protects hippocampal neurons from oxygen-glucose deprivation injury through inhibiting caspase-3 activation [J]. Cryobiology, 2018, 80: 55-61.
6
Li J, Cai D, Yao X, et al. Protective effect of ginsenoside Rg1 on hematopoietic stem/progenitor cells through attenuating oxidative stress and the Wnt/β-catenin signaling pathway in a mouse model of d-Galactose-induced aging [J]. Int J Mol Sci, 2016, 17(6): 849.
7
Zhou T, Liang Y, Jiang L, et al. Mild hypothermia protects against oxygen glucose deprivation/reoxygenation-induced apoptosis via the Wnt/beta-catenin signaling pathway in hippocampal neurons [J]. Biochem Biophys Res Commun, 2017, 486(4): 1005-1013.
8
Liu X, Li F, Zhao S, et al. MicroRNA-124-mediated regulation of inhibitory member of apoptosis-stimulating protein of p53 family in experimental stroke [J]. Stroke, 2013, 44(7): 1973-1980.
9
Liu X, Wen S, Zhao S, et al. Mild therapeutic hypothermia protects the brain from ischemia/reperfusion injury through upregulation of iASPP [J]. Aging Dis, 2018, 9(3): 401-411.
10
Li T, Zhang L, Jin C, et al. Pomegranate flower extract bidirectionally regulates the proliferation, differentiation and apoptosis of 3T3-L1 cells through regulation of PPARγ expression mediated by PI3K-AKT signaling pathway [J]. Biomed Pharmacother, 2020, 131: 110769.
11
Gao Z, Zhang Z, Bian Q, et al. Mild hypothermia protects rat cortical neurons against oxygen-glucose deprivation/reoxygenation injury via the PI3K/Akt pathway [J]. Neuroreport, 2021, 32(4): 312-320.
12
Galluzzi L, Kepp O, Kroemer G. Mitochondrial regulation of cell death: a phylogenetically conserved control [J]. Microb Cell, 2016, 3(3): 101-108.
13
Chang CY, Liang MZ, Chen L. Current progress of mitochondrial transplantation that promotes neuronal regeneration [J]. Transl Neurodegener, 2019, 8: 17.
14
Hayakawa K, Esposito E, Wang X, et al. Transfer of mitochondria from astrocytes to neurons after stroke [J]. Nature, 2016, 535(7613): 551-555.
15
Li X, Li Y, Zhang Z, et al. Mild hypothermia facilitates mitochondrial transfer from astrocytes to injured neurons during oxygen-glucose deprivation/reoxygenation [J]. Neurosci Lett, 2021, 756: 135940.
16
Wei W, Wu D, Duan Y, et al. Neuroprotection by mesenchymal stem cell (MSC) administration is enhanced by local cooling infusion (LCI) in ischemia [J]. Brain Res, 2019, 1724: 146406.
17
Russo E, Nguyen H, Lippert T, et al. Mitochondrial targeting as a novel therapy for stroke [J]. Brain Circ, 2018, 4(3): 84-94.
18
Tang YN, Zhang GF, Chen HL, et al. Selective brain hypothermia-induced neuroprotection against focal cerebral ischemia/reperfusion injury is associated with Fis1 inhibition [J]. Neural Regen Res, 2020, 15(5): 903-911.
19
Sosunov S, Bhutada A, Niatsetskaya Z, et al. Mitochondrial calcium buffering depends upon temperature and is associated with hypothermic neuroprotection against hypoxia-ischemia injury [J]. PLoS One, 2022, 17(8): e0273677.
20
Vargas JNS, Hamasaki M, Kawabata T, et al. The mechanisms and roles of selective autophagy in mammals [J]. Nat Rev Mol Cell Biol, 2023, 24(3): 167-185.
21
Zhang Y, Cao Y, Liu C. Autophagy and Ischemic Stroke [J]. Adv Exp Med Biol, 2020, 1207: 111-134.
22
Mo Y, Sun YY, Liu KY. Autophagy and inflammation in ischemic stroke [J]. Neural Regen Res, 2020, 15(8): 1388-1396.
23
Zhou T, Liang L, Liang Y, et al. Mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury by improving lysosomal function and autophagic flux [J]. Exp Cell Res, 2017, 358(2): 147-160.
24
Tu Y, Guo C, Song F, et al. Mild hypothermia alleviates diabetes aggravated cerebral ischemic injury via activating autophagy and inhibiting pyroptosis [J]. Brain Res Bull, 2019, 150: 1-12.
25
Chen W, Sun Y, Liu K, et al. Autophagy: a double-edged sword for neuronal survival after cerebral ischemia [J]. Neural Regen Res, 2014, 9(12): 1210-1216.
26
Song F, Guo C, Geng Y, et al. Therapeutic time window and regulation of autophagy by mild hypothermia after intracerebral hemorrhage in rats [J]. Brain Res, 2018, 1690: 12-22.
27
Saugstad JA. Non-coding RNAs in stroke and neuroprotection [J]. Front Neurol, 2015, 6: 50.
28
Liu X, Wu D, Wen S, et al. Mild therapeutic hypothermia protects against cerebral ischemia/reperfusion injury by inhibiting miR-15b expression in rats [J]. Brain Circ, 2017, 3(4): 219-226.
29
Zhao S, Liu X, Kang J, et al. Analysis of microRNA expression in cerebral ischemia/reperfusion after mild therapeutic hypothermia treatment in rats [J]. Ann Transl Med, 2021, 9(2): 168.
30
Liu L, Liu X, Wang R, et al. Mild focal hypothermia regulates the dynamic polarization of microglia after ischemic stroke in mice [J]. Neurol Res, 2018, 40(6): 508-515.
31
Kim JY, Kim JH, Park J, et al. Targeted temperature management at 36 degrees C shows therapeutic effectiveness via alteration of microglial activation and polarization after ischemic stroke [J]. Transl Stroke Res, 2022, 13(1): 132-141.
32
Liu L, Liu J, Li M, et al. Selective brain hypothermia attenuates focal cerebral ischemic injury and improves long-term neurological outcome in aged female mice [J]. CNS Neurosci Ther, 2023, 29(1): 129-139.
33
Sun H, Cai J, Shen S, et al. Hypothermia treatment ameliorated cyclin-dependent kinase 5-mediated inflammation in ischemic stroke and improved outcomes in ischemic stroke patients [J]. Clinics (Sao Paulo), 2019, 74: e938.
34
Arunachalam P, Ludewig P, Melich P, et al. CCR6 (CC chemokine receptor 6) is essential for the migration of detrimental natural interleukin-17-producing gammadelta T cells in stroke [J]. Stroke, 2017, 48(7): 1957-1965.
35
Cai H, Ma X, Lu D, et al. Mild hypothermia promotes ischemic tolerance and survival of neural stem cell grafts by enhancing global SUMOylation [J]. Oxid Med Cell Longev, 2022, 2022: 6503504.
[1] 刘欢颜, 华扬, 贾凌云, 赵新宇, 刘蓓蓓. 颈内动脉闭塞病变管腔结构和血流动力学特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 809-815.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[5] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[6] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[7] 许秀兰, 朱建建. 血压变异性与伴H型高血压的急性脑梗死患者预后不良的临床关系分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 199-204.
[8] 马丽. CT灌注联合血管成像预测急性脑梗死患者近期神经功能预后的价值分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 229-234.
[9] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[10] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[11] 宁丽娜, 熊杰. 醒脑开窍针刺法结合舌部针刺治疗脑梗死后构音障碍的疗效观察[J]. 中华针灸电子杂志, 2023, 12(04): 146-150.
[12] 丁晶, 李培雯, 许迎春. 醒脑开窍针刺法在神经急重症中的应用[J]. 中华针灸电子杂志, 2023, 12(04): 161-164.
[13] 朱敏, 李法强. 血清GFAP、UCH-L1联合VILIP-1水平对急性脑梗死神经功能预后不良的预测研究[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 452-457.
[14] 李秦鹏, 王其涛, 朱媛媛, 周琦, 刘笑言, 许勇. 颈动脉彩色多普勒超声、颈部CT血管成像及脑部CT灌注成像在脑梗死并发颈动脉狭窄患者中的应用研究[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 482-488.
[15] 李安, 张秀萍, 白波, 赵阳, 薛国芳, 李东芳. 主动脉夹层术后并发神经系统并发症二例及文献复习[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 373-378.
阅读次数
全文


摘要