切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 71 -80. doi: 10.11817/j.issn.1673-9248.2024.01.012

综述

急性缺血性卒中再灌注治疗后出血转化的研究进展
梁文雯1, 李征2, 万敏2, 骆佳莹1, 贾伟华1,()   
  1. 1. 261053 山东潍坊,潍坊医学院临床医学院;100043 北京,首都医科大学石景山教学医院 北京市石景山医院神经内科
    2. 100043 北京,首都医科大学石景山教学医院 北京市石景山医院神经内科
  • 收稿日期:2023-08-16 出版日期:2024-02-01
  • 通信作者: 贾伟华
  • 基金资助:
    北京市石景山医院2019级院级科研项目(sjsky-201901)

Research progress on hemorrhagic transformation after reperfusion therapy for acute ischemic stroke

Wenwen Liang1, Zheng Li2, Min Wan2, Jiaying Luo1, Weihua Jia1,()   

  1. 1. School of Clinical Medicine, Weifang Medical College, Weifang 261053, China;Department of Neurology, Shijingshan Teaching Hosptial of Capital Medical University, Beijing Shijingshan Hosptial, Beijing 100043, China
    2. Department of Neurology, Shijingshan Teaching Hosptial of Capital Medical University, Beijing Shijingshan Hosptial, Beijing 100043, China
  • Received:2023-08-16 Published:2024-02-01
  • Corresponding author: Weihua Jia
引用本文:

梁文雯, 李征, 万敏, 骆佳莹, 贾伟华. 急性缺血性卒中再灌注治疗后出血转化的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 71-80.

Wenwen Liang, Zheng Li, Min Wan, Jiaying Luo, Weihua Jia. Research progress on hemorrhagic transformation after reperfusion therapy for acute ischemic stroke[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2024, 18(01): 71-80.

急性缺血性脑卒中(AIS)采取再灌注治疗后,引起出血转化(HT)的情况虽不常见,但严重影响患者预后和神经功能恢复。目前研究较多的HT机制包括缺血损伤、缺血再灌注、阿替普酶带来的凝血功能异常及血-脑屏障破坏。通过认识临床危险因素和应用预测模型及多模态影像学检查等手段可以实现对HT的早期发现和早期预防。未来使用新型溶栓药物及新研发的脑保护剂有望进一步控制HT转化率和改善患者预后。本综述总结HT的分类、病理生理学机制、危险因素、预测因子和预测模型,以及相应治疗,以及时发现,更好预防,同时针对性地给予个体化治疗,尽可能降低严重并发症的危害,提高AIS患者再灌注治疗后血管再通获益率及降低神经功能损害,促进预后。

After reperfusion therapy for acute ischemic stroke (AIS), the hemorrhagic transformation caused by reperfusion is uncommon, but it seriously affects the prognosis and neurological recovery of the patients. At present, the mechanisms of bleeding transformation that have been extensively studied include ischemia injury, ischemia reperfusion, coagulation dysfunction caused by Alteplase (rt-PA), and destruction of blood-brain barrier. The early detection and prevention of hemorrhagic transformation (HT) can be achieved through recognizing clinical risk factors and applying predictive models and multimodal imaging. Future use of novel thrombolytic drugs and newly developed brain protectants is expected to control HT conversion further and improve patients' outcomes. This review summarizes the classification, pathophysiological mechanisms, risk factors, predictors and predictive models, and corresponding treatment of HT, for timely recognizing and prevention, and at the same time, individualized treatment should be given to reduce the harm of serious complications as far as possible, and improve the benefit rate of vascular recanalization in AIS patients after reperfusion therapy and reduce the neurological function damage to promote the prognosis.

表1 溶栓后脑HT的常用影像学分类系统
表2 溶栓后HT的临床生物学差异
1
王拥军, 李子孝, 谷鸿秋, 等. 《中国卒中报告》编写委员会. 中国卒中报告2020 (中文版) (1) [J]. 中国卒中杂志, 2022, 17(5): 433-447.
2
Wang YJ, Li ZX, Gu HQ, et al. China stroke statistics: an update on the 2019 report from the National Center for Healthcare Quality Management in Neurological Diseases, China National Clinical Research Center for Neurological Diseases, the Chinese Stroke Association, National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention and Institute for Global Neuroscience and Stroke Collaborations [J]. Stroke Vasc Neurol, 2022, 7(5): 415-450.
3
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国急性脑梗死后出血转化诊治共识2019 [J]. 中华神经科杂志, 2019, 52(4): 252-265.
4
Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with Alteplase 3 to 4.5 hours after acute ischemic stroke [J]. N Engl J Med, 2008, 359(13): 1317-1329.
5
Von Kummer R, Broderick JP, Campbell BCV, et al. The Heidelberg bleeding classification: classification of bleeding events after ischemic stroke and reperfusion therapy [J]. Stroke, 2015, 46(10): 2981-2986.
6
Qin H, Chen Y, Liu G, et al. Management characteristics and prognosis after stroke in China: findings from a large nationwide stroke registry[J]. Stroke Vasc Neurol, 2021, 6(1): 1-9.
7
Yaghi S, Willey JZ, Cucchiara B, et al. Treatment and outcome of hemorrhagic transformation after intravenous Alteplase in acute ischemic stroke: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association [J]. Stroke, 2017, 48(12): e343-e361.
8
Qiu L, Fu F, Zhang W, et al. Prevalence, risk factors, and clinical outcomes of remote intracerebral hemorrhage after intravenous thrombolysis in acute ischemic stroke: a systematic review and meta-analysis [J]. J Neurol, 2023, 270(2): 651-661.
9
李胜德, 倪俊, 彭斌, 等. 颅内出血后重启抗血栓治疗的研究进展 [J]. 中华神经科杂志, 2023, 56(2): 204-211.
10
He J, Fu F, Zhang W, et al. Prognostic significance of the clinical and radiological haemorrhagic transformation subtypes in acute ischaemic stroke: A systematic review and meta-analysis [J]. Eur J Neurol, 2022, 29(11): 3449-3459.
11
霍晓川, 高峰. 急性缺血性卒中血管内治疗中国指南2018 [J]. 中国卒中杂志, 2018, 13(7): 706-729.
12
Reuter B, Grudzenski S, Chatzikonstantinou E, et al. Thrombolysis in experimental cerebral amyloid angiopathy and the risk of secondary intracerebral hemorrhage [J]. Stroke, 2014, 45(8): 2411-2416.
13
Prats-Sánchez L, Camps-Renom P, Sotoca-Fernández J, et al; Catalan Stroke Code and Reperfusion Consortium (Cat-SCR). Remote intracerebral hemorrhage after intravenous thrombolysis: results from a multicenter study [J]. Stroke, 2016, 47(8): 2003-2009.
14
Trouillas P, von Kummer R. Classification and pathogenesis of cerebral hemorrhages after thrombolysis in ischemic stroke [J]. Stroke, 2006, 37(2): 556-561.
15
Wang W, Li M, Chen Q, et al. Hemorrhagic Transformation After Tissue Plasminogen Activator Reperfusion Therapy for Ischemic Stroke: Mechanisms, Models, and Biomarkers [J]. Mol Neurobiol, 2015, 52(3): 1572-1579.
16
Liebner S, Dijkhuizen RM, Reiss Y, et al. Functional morphology of the blood-brain barrier in health and disease [J]. Acta Neuropathol, 2018, 135(3): 311-336.
17
Yang C, Hawkins KE, Doré S, et al. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke [J]. Am J Physiol Cell Physiol, 2019, 316(2): C135-C153.
18
Ma G, Pan Z, Kong L, et al. Neuroinflammation in hemorrhagic transformation after tissue plasminogen activator thrombolysis: potential mechanisms, targets, therapeutic drugs and biomarkers [J]. Int Immunopharmacol, 2021, 90: 107216.
19
Chen H, Guan B, Wang B, et al. Glycyrrhizin prevents hemorrhagic transformation and improves neurological outcome in ischemic stroke with delayed thrombolysis through targeting peroxynitrite-mediated HMGB1 signaling [J]. Transl Stroke Res, 2020, 11(5): 967-982.
20
DeLong JH, Ohashi SN, O'Connor KC, et al. Inflammatory responses after ischemic stroke [J]. Semin Immunopathol, 2022, 44(5): 625-648.
21
Mao L, Li P, Zhu W, et al. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke [J]. Brain, 2017, 140(7): 1914-1931.
22
Gu L, Xiong X, Zhang H, et al. Distinctive effects of T cell subsets in neuronal injury induced by cocultured splenocytes in vitro and by in vivo stroke in mice [J]. Stroke, 2012, 43(7): 1941-1946.
23
Jickling GC, Liu D, Stamova B, et al. Hemorrhagic transformation after ischemic stroke in animals and humans [J]. J Cereb Blood Flow Metab, 2014, 34(2): 185-199.
24
Jolugbo P, Ariëns RAS. Thrombus composition and efficacy of thrombolysis and thrombectomy in acute ischemic stroke [J]. Stroke, 2021, 52(3): 1131-1142.
25
Zhang S, Cao Y, Du J, et al. Neutrophil extracellular traps contribute to tissue plasminogen activator resistance in acute ischemic stroke [J]. FASEB J, 2021, 35(9): e21835.
26
Jiang X, Andjelkovic AV, Zhu L, et al. Blood-brain barrier dysfunction and recovery after ischemic stroke [J]. Prog Neurobiol, 2018, 163-164: 144-171.
27
Kazmierski R, Michalak S, Wencel-Warot A, et al. Serum tight-junction proteins predict hemorrhagic transformation in ischemic stroke patients [J]. Neurology, 2012, 79(16): 1677-1685.
28
Spitzer D, Guérit S, Puetz T, et al. Profiling the neurovascular unit unveils detrimental effects of osteopontin on the blood-brain barrier in acute ischemic stroke [J]. Acta Neuropathol, 2022, 144(2): 305-337.
29
The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Intracerebral hemorrhage after intravenous t-PA for ischemic stroke [J]. Stroke, 1997, 28: 2109-2118.
30
Larrue V, von Kummer R, Mu¨ller A, et al. Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator. A secondary analysis of the European-Australasian Acute Stroke Study (ECASSII) [J]. Stroke, 2001, 32(2): 438-441.
31
Dolatshahi M, Sabahi M, Shahjouei S, et al. Intravenous thrombolysis in ischemic stroke patients with a prior intracranial hemorrhage: a meta-analysis [J]. Ther Adv Neurol Disord, 2022, 15: 17562864221074144.
32
Wang Y, Yan X, Zhan J, et al. Neuroimaging markers of cerebral small vessel disease on hemorrhagic transformation and functional outcome after intravenous thrombolysis in patients with acute ischemic stroke: a systematic review and meta-analysis [J]. Front Aging Neurosci, 2021, 13: 692942.
33
Wang X, Li JW, Moullaali TJet al. Low-dose versus standard-dose Alteplase in acute ischemic stroke in Asian stroke registries: an individual patient data pooling study [J]. Int J Stroke, 2019, 14(7): 670-677.
34
Putaala J, Saver JL, Nour M, et al. Should Tenecteplase be given in clinical practice for acute ischemic stroke thrombolysis? [J]. Stroke, 2021, 52(9): 3075-3080.
35
Burgos AM, Saver JL. Evidence that tenecteplase is noninferior to Alteplase for acute ischemic stroke: meta-analysis of 5 randomized trials [J]. Stroke, 2019, 50: 2156-2162.
36
Katsanos AH, Psychogios K, Turc G, et al. Off-label use of Tenecteplase for the treatment of acute ischemic stroke [J]. JAMA Network Open, 2022, 5(3): e224506.
37
Zhong CS, Beharry J, Salazar D, et al. Routine use of Tenecteplase for thrombolysis in acute ischemic stroke [J]. Stroke, 2021, 52(3): 1087-1090.
38
Qureshi AI, Baskett WI, Bains NK, et al. Outcomes with IV Tenecteplase and IV Alteplase for acute ischemic stroke with or without thrombectomy in real-world settings in the United States [J]. J Stroke Cerebrovasc Dis, 2023, 32(2): 106898.
39
Sun J, Lam C, Christie L, et al. Risk factors of hemorrhagic transformation in acute ischaemic stroke: a systematic review and meta-analysis [J]. Front Neurol, 2023, 14: 1079205.
40
Emberson J, Lees KR, Lyden P, et al; Stroke Thrombolysis Trialists’ Collaborative Group. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with Alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials [J]. Lancet, 2014, 384(9958): 1929-1935.
41
Lindley RI, Wardlaw JM, Whiteley WN, et al; IST-3 Collaborative Group. Alteplase for acute ischemic stroke: outcomes by clinically important subgroups in the Third International Stroke Trial [J]. Stroke, 2015, 46(3): 746-756.
42
Wang Y, Liu J, Wu Q, et al. Validation and comparison of multiple risk scores for prediction of symptomatic intracerebral hemorrhage after intravenous thrombolysis in VISTA [J]. Int J Stroke, 2023, 18(3): 338-345.
43
Sun H, Liu Y, Gong P, et al. Intravenous thrombolysis for ischemic stroke with hyperdense middle cerebral artery sign: A meta-analysis [J]. Acta Neurol Scand, 2020, 141(3): 193-201.
44
Elsaid N, Bigliardi G, Dell'Acqua ML, et al. Proposal of multimodal computed tomography-based scoring system in prediction of hemorrhagic transformation in acute ischemic stroke [J]. Acta Neurol Belg, 2023, 123(4): 1405-1411.
45
Hong L, Hsu TM, Zhang Y, et al. Neuroimaging prediction of hemorrhagic transformation for acute ischemic stroke [J]. Cerebrovasc Dis, 2022, 51(4): 542-552.
46
Arba F, Piccardi B, Palumbo V, et al. Blood-brain barrier leakage and hemorrhagic transformation: the reperfusion injury in ischemic stroke (RISK) study [J]. Eur J Neurol, 2021, 28(9): 3147-3154.
47
Yang M, Tang L, Hu Z, et al. Application of neuroimaging for the prediction of hemorrhagic transformation after intravenous thrombolysis in acute ischemic stroke [J]. Cerebrovasc Dis, 2023, 52(1): 1-10.
48
Jia X, Xie L, Liu Y, et al. Astragalus polysaccharide (APS) exerts protective effect against acute ischemic stroke (AIS) through enhancing M2 micoglia polarization by regulating adenosine triphosphate (ATP)/ purinergic receptor (P2X7R) axis [J]. Bioengineered, 2022, 13(2): 4468-4480.
49
Hernandez-Guillamon M, Garcia-Bonilla L, Solé M, et al. Plasma VAP-1/SSAO activity predicts intracranial hemorrhages and adverse neurological outcome after tissue plasminogen activator treatment in stroke [J]. Stroke, 2010, 41(7): 1528-35.
50
Xie J, Pang C, Yu H, et al. Leukocyte indicators and variations predict worse outcomes after intravenous thrombolysis in patients with acute ischemic stroke [J]. J Cereb Blood Flow Metab, 2023, 43(3): 393-403.
51
Yuan S, Li W, Hou C, et al. Serum occludin level combined with NIHSS score predicts hemorrhage transformation in ischemic stroke patients with reperfusion [J]. Front Cell Neurosci, 2021, 15: 714171.
52
Yang M, Tang L, Bing S, et al. Association between fibrinogen-to-albumin ratio and hemorrhagic transformation after intravenous thrombolysis in ischemic stroke patients [J]. Neurol Sci, 2023, 44(4): 1281-1288.
53
García-Yébenes I, García-Culebras A, Peña-Martínez C, et al. Iron overload exacerbates the risk of hemorrhagic transformation after tPA (tissue-type plasminogen activator) administration in thromboembolic stroke mice [J]. Stroke, 2018, 49(9): 2163-2172.
54
Wu Q, Wei C, Guo S, et al. Acute iron overload aggravates blood-brain barrier disruption and hemorrhagic transformation after transient focal ischemia in rats with hyperglycemia [J]. IBRO Neurosci Rep, 2022, 13: 87-95.
55
Meng D, Li Y, Ju T, et al. Low MHR is associated with hemorrhagic transformation in acute large artery atherosclerosis ischemic stroke patients with intravenous thrombolysis [J]. Clin Appl Thromb Hemost, 2023, 29: 10760296231167849.
56
Guo ZN, Liu J, Chang J, et al. GAS6/Axl signaling modulates blood-brain barrier function following intravenous thrombolysis in acute ischemic stroke [J]. Front Immunol, 2021, 12: 742359.
57
He L, Guo ZN, Qu Y, et al. Hyponatremia is associated with post-thrombolysis hemorrhagic transformation and poor clinical outcome in ischemic stroke patients [J]. Front Mol Neurosci, 2022, 15: 879863.
58
Jia W, Zhou L, Liao X, et al. Postthrombolytic antiplatelet use for patients with intercerebral hemorrhage without extensive parenchymal involvement does not worsen outcome [J]. J Clin Neurol, 2015, 11(4): 305.
59
蔡宪杰, 高亚娟, 傅瑜. 脑细胞外间隙与缺血性脑卒中的研究进展 [J/OL]. 中华脑血管病杂志 (电子版), 2021, 15(5): 276-280.
60
Chen XQ, Qiu K, Liu H, et al. Application and prospects of butylphthalide for the treatment of neurologic diseases [J]. Chin Med J (Engl), 2019, 132(12): 1467-1477.
61
中国卒中学会. 中国脑血管病临床管理指南 (第2版) (节选)——第四章第五节 急性缺血性脑血管病其他治疗 [M]. 北京: 人民卫生出版社, 2023: 219-222.
62
Hu R, Liang J, Ding L, et al. Edaravone dexborneol provides neuroprotective benefits by suppressing NLRP3 inflammasome-induced microglial pyroptosis in experimental ischemic stroke [J]. Int Immunopharmacol, 2022, 113(Pt A): 109315.
63
Chen H, Luo Y, Tsoi B, et al. Angong Niuhuang Wan reduces hemorrhagic transformation and mortality in ischemic stroke rats with delayed thrombolysis: involvement of peroxynitrite-mediated MMP-9 activation [J]. Chin Med, 2022, 17(1): 51.
64
Li Y, Zhu ZY, Lu BW, et al. Rosiglitazone ameliorates tissue plasminogen activator-induced brain hemorrhage after stroke [J]. CNS Neurosci Ther, 2019, 25(12): 1343-1352.
65
Jin R, Xiao AY, Liu S, et al. Taurine reduces tPA (tissue-type plasminogen activator)-induced hemorrhage and microvascular thrombosis after embolic stroke in rat [J]. Stroke, 2018, 49(7): 1708-1718.
[1] 于桐, 孙姗姗, 刘扬. 乳腺导管原位癌的浸润转化机制及临床病理特征[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 304-307.
[2] 李蓉. 薄型子宫内膜治疗新方法[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 591-591.
[3] 娜菲沙·沙木西丁, 艾科热木·开赛尔江, 王雅琦, 李万富. 先天性腹壁缺损患儿的发病机制及创新治疗[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 468-475.
[4] 严华悦, 刘子祥, 周少波. 磷酸烯醇式丙酮酸羧激酶-1在恶性肿瘤中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 452-456.
[5] 刘璐璐, 何羽. 慢性阻塞性肺病患者睡眠障碍的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 836-839.
[6] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[7] 王庭宇, 邵联波, 刘珊, 沈振亚. Stanford A 型主动脉夹层相关基因KIF20A 的共表达网络构建及作用靶点分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 303-312.
[8] 赵泽云, 李建男, 王旻. 中性粒细胞胞外诱捕网在结直肠癌中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 524-528.
[9] 王梦琪, 刘恒昌, 陈海鹏, 刘佳. 骶神经刺激治疗排便失禁的机制研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 417-422.
[10] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
[11] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[12] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[13] 徐靖亭, 孔璐. PARP抑制剂治疗卵巢癌的耐药机制及应对策略[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 584-588.
[14] 周佳佳, 俞莹, 梁舒. 视频终端视相关性干眼症的机制研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 402-406.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要