1 |
汪凯, 董强, 郁金泰, 等. 卒中后认知障碍管理专家共识2021 [J]. 中国卒中杂志, 2021, 16(4): 376-389.
|
2 |
王俊. 中国卒中后认知障碍防治研究专家共识 [J]. 中国卒中杂志, 2020, 15(2): 158-166.
|
3 |
Lefaucheur JP, Aleman A, Baeken C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014-2018) [J]. Clin Neurophysiol, 2020, 131(2): 474-528.
|
4 |
Feng G, Jicheng L, Xiaohua H, et al. Repetitive transcranial magnetic stimulation ameliorates cognitive impairment by enhancing neurogenesis and suppressing apoptosis in the hippocampus in rats with ischemic stroke [J]. Front Physiol, 2017, 8: 559.
|
5 |
Hong J, Chen J, Li C, et al. High-frequency rTMS improves cognitive function by regulating synaptic plasticity in cerebral ischemic rats [J]. Neurochem Res, 2021, 46(2): 276-286.
|
6 |
Wang F, Geng X, Tao HY, et al. The restoration after repetitive transcranial magnetic stimulation treatment on cognitive ability of vascular dementia rats and its impacts on synaptic plasticity in hippocampal CA1 area [J]. J Mol Neurosci, 2010, 41(1): 145-155.
|
7 |
Domigan CK, Ziyad S, Iruela-Arispe ML. Canonical and noncanonical vascular endothelial growth factor pathways: new developments in biology and signal transduction [J]. Arterioscler Thromb Vasc Biol, 2015, 35(1): 30-39.
|
8 |
Zhang N, Xing M, Wang Y, et al. Repetitive transcranial magnetic stimulation enhances spatial learning and synaptic plasticity via the VEGF and BDNF-NMDAR pathways in a rat model of vascular dementia [J]. Neuroscience, 2015, 311: 284-291.
|
9 |
Jiang B, He D. Repetitive transcranial magnetic stimulation (rTMS) fails to increase serum brain-derived neurotrophic factor (BDNF) [J]. Neurophysiol Clin, 2019, 49(4): 295-300.
|
10 |
Luo J, Zheng H, Zhang L, et al. High-frequency repetitive transcranial magnetic stimulation (rTMS) improves functional recovery by enhancing neurogenesis and activating BDNF/TrkB signaling in ischemic rats [J]. Int J Mol Sci, 2017, 18(2): 455.
|
11 |
丁巧方, 李哲, 郭钢花, 等. 不同频率重复经颅磁刺激对脑卒中后认知障碍患者的影响 [J]. 中国康复, 2019, 34(10): 513-517.
|
12 |
Lu H, Zhang T, Wen M, et al. Impact of repetitive transcranial magnetic stimulation on post-stroke dysmnesia and the role of BDNF Val66Met SNP [J]. Med Sci Monit, 2015, 21: 761-768.
|
13 |
Kim BR, Chun MH, Kim DY, et al. Effect of high- and low-frequency repetitive transcranial magnetic stimulation on visuospatial neglect in patients with acute stroke: a double-blind, sham-controlled trial [J]. Arch Phys Med Rehabil, 2013, 94(5): 803-807.
|
14 |
Weiduschat N, Thiel A, Rubi-Fessen I, et al. Effects of repetitive transcranial magnetic stimulation in aphasic stroke: a randomized controlled pilot study [J]. Stroke, 2011, 42: 409-415.
|
15 |
Kaiser RH, Andrews-Hanna JR, Wager TD, et al. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity [J]. JAMA Psychiatry, 2015, 72(6): 603-611.
|
16 |
Panikratova YR, Vlasova RM, Akhutina TV, et al. Functional connectivity of the dorsolateral prefrontal cortex contributes to different components of executive functions [J]. Int J Psychophysiol, 2020, 151: 70-79.
|
17 |
Shang Y, Chang D, Zhang J, et al. Theta-burst transcranial magnetic stimulation induced functional connectivity changes between dorsolateral prefrontal cortex and default-mode-network [J]. Brain Imaging Behav, 2020, 14(5): 1955-1963.
|
18 |
Hu XY, Zhang T, Rajah GB, et al. Effects of different frequencies of repetitive transcranial magnetic stimulation in stroke patients with non-fluent aphasia: a randomized, sham-controlled study [J]. Neurol Res, 2018, 40(6): 459-465.
|
19 |
Lim J, Kang E, Paik N. Repetitive transcranial magnetic stimulation to hemispatial neglect in patients after stroke: an open-label pilot study [J]. J Rehabil Med, 2010, 42(5): 447-452.
|
20 |
Han K, Liu J, Tang Z, et al. Effects of excitatory transcranial magnetic stimulation over the different cerebral hemispheres dorsolateral prefrontal cortex for post-stroke cognitive impairment: a systematic review and meta-analysis [J]. Front Neurosci, 2023, 17: 1102311.
|
21 |
Zhang XQ, Li L, Huo JT, et al. Effects of repetitive transcranial magnetic stimulation on cognitive function and cholinergic activity in the rat hippocampus after vascular dementia [J]. Neural Regen Res, 2018, 13(8): 1384-1389.
|
22 |
Chen J, Zeng Y, Hong J, et al. Effects of HF-rTMS on microglial polarization and white matter integrity in rats with poststroke cognitive impairment [J]. Behav Brain Res, 2023, 439: 114242.
|
23 |
Kim BR, Kim DY, Chun MH, et al. Effect of repetitive transcranial magnetic stimulation on cognition and mood in stroke patients a double-blind, sham-controlled trial [J]. Am J Phys Med Rehabil, 2010, 89(5): 362-368.
|
24 |
Bi Y, Gong Z, Chen W, et al. Cerebral activity manipulation of low-frequency repetitive transcranial magnetic stimulation in post-stroke patients with cognitive impairment [J]. Front Neurol, 2022, 13: 951209.
|
25 |
Biswal BB, Mennes M, Zuo XN, et al. Toward discovery science of human brain function [J]. Proc Natl Acad Sci U S A, 2010, 107(10): 4734-4739.
|
26 |
Lv H, Wang Z, Tong E, et al. Resting-state functional mri: everything that nonexperts have always wanted to know [J]. AJNR Am J Neuroradiol, 2018, 39(8): 1390-1399.
|
27 |
Peng CY, Chen YC, Cui Y, et al. Regional coherence alterations revealed by resting-state fMRI in post-stroke patients with cognitive dysfunction [J]. PLoS One, 2016, 11: e0159574.
|
28 |
Wang J, Chen H, Liang H, et al. Low-frequency fluctuations amplitude signals exhibit abnormalities of intrinsic brain activities and reflect cognitive impairment in leukoaraiosis patients [J]. Med Sci Monit, 2019, 25: 5219-5228.
|
29 |
Liu C, Li C, Yin X, et al. Abnormal intrinsic brain activity patterns in patients with subcortical ischemic vascular dementia [J]. PLoS One, 2014, 9: e87880.
|
30 |
Liu J, Wang Q, Liu F, et al. Altered functional connectivity in patients with poststroke memory impairment: a resting fMRI study [J]. Exp Ther Med, 2017, 14(3): 1919-1928.
|
31 |
Miraglia F, Vecchio F, Marra C, et al. Small world index in default mode network predicts progression from mild cognitive impairment to dementia [J]. Int J Neural Syst, 2020, 30(2): 2050004.
|
32 |
Wang J, Chen Y, Liang H, et al. The role of disturbed small-world networks in patients with white matter lesions and cognitive impairment revealed by resting state function magnetic resonance images (rs-fMRI) [J]. Med Sci Monit, 2019, 25: 341-356.
|
33 |
Liu J, Qin W, Wang H, et al. Altered spontaneous activity in the default-mode network and cognitive decline in chronic subcortical stroke [J]. J Neurol Sci, 2014, 347(1-2): 193-198.
|
34 |
Allen EA, Damaraju E, Plis SM, et al. Tracking whole-brain connectivity dynamics in the resting state [J]. Cereb Cortex, 2014, 24(3): 663-676.
|
35 |
Bajaj S, Butler AJ, Drake D, et al. Functional organization and restoration of the brain motor-execution network after stroke and rehabilitation [J]. Front Hum Neurosci, 2015, 9: 173.
|
36 |
Jokinen H, Melkas S, Ylikoski R, et al. Post-stroke cognitive impairment is common even after successful clinical recovery [J]. Eur J Neurol, 2015, 22(9): 1288-1294.
|
37 |
Jilka SR, Scott G, Ham T, et al. Damage to the salience network and interactions with the default mode network [J]. J Neurosci, 2014, 34(33): 10798-10807.
|
38 |
Andrews-Hanna JR, Reidler JS, Sepulcre J, et al. Functional-anatomic fractionation of the brain's default network [J]. Neuron, 2010, 65(4): 550-562.
|
39 |
Ding X, Li CY, Wang QS, et al. Patterns in default-mode network connectivity for determining outcomes in cognitive function in acute stroke patients [J]. Neuroscience, 2014, 277: 637-646.
|
40 |
Vicentini JE, Weiler M, Casseb RF, et al. Subacute functional connectivity correlates with cognitive recovery six months after stroke [J]. Neuroimage Clin, 2021, 29: 102538.
|
41 |
Tuladhar AM, Snaphaan L, Shumskaya E, et al. Default mode network connectivity in stroke patients [J]. PLoS One, 2013, 8: e66556.
|
42 |
Zhang J, Li Z, Cao X, et al. Altered prefrontal-basal ganglia effective connectivity in patients with poststroke cognitive impairment [J]. Front Neurol, 2020, 11: 577482.
|
43 |
Brown CE, Li P, Boyd JD, et al. Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke [J]. J Neurosci, 2007, 27(15): 4101-4109.
|
44 |
Desowska A, Turner DL. Dynamics of brain connectivity after stroke [J]. Rev Neurosci, 2019, 30(6): 605-623.
|
45 |
Xue SW, Guo Y, Peng W, et al. Increased low-frequency resting-state brain activity by high-frequency repetitive TMS on the left dorsolateral prefrontal cortex [J]. Front Psychol, 2017, 8: 2266.
|
46 |
Liang P, Wang Z, Yang Y, et al. Functional disconnection and compensation in mild cognitive impairment: evidence from DLPFC connectivity using resting-state fMRI [J]. PLoS One, 2011, 6(7): 1-12.
|
47 |
Park JY, Kim YH, Chang WH, et al. Significance of longitudinal changes in the default-mode network for cognitive recovery after stroke [J]. Eur J Neurosci, 2014, 40(4): 2715-2722.
|
48 |
Li Y, Luo H,Yu Q, et al. Cerebral functional manipulation of repetitive transcranial magnetic stimulation in cognitive impairment patients after stroke: an fMRI study [J]. Front Neurol, 2020, 11: 977.
|
49 |
Yin M, Liu Y, Zhang L, et al. Effects of rTMS treatment on cognitive impairment and resting-state brain activity in stroke patients: a randomized clinical trial [J]. Front Neural Circuits, 2020, 14: 563777.
|