切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 81 -85. doi: 10.11817/j.issn.1673-9248.2024.01.013

综述

重复经颅磁刺激治疗卒中后认知功能障碍的静息态功能磁共振研究进展
刘婷1, 杨逸昊1, 李仙1, 李丽娟1, 马琳1, 李其富1,()   
  1. 1. 570102 海口,海南医学院第一附属医院神经内科,海南省热带脑科学研究与转化重点实验室
  • 收稿日期:2023-10-12 出版日期:2024-02-01
  • 通信作者: 李其富
  • 基金资助:
    海南省临床医学中心建设项目(2021); 海南医学院癫痫研究创新团队(2022)和海南省优秀人才团队(QRCBT202121)

Research progress on rs-fMRI in the post-stroke cognitive dysfunction after the treatment of repetitive transcranial magnetic stimulation

Ting Liu1, Yihao Yang1, Xian Li1, Lijuan Li1, Lin Ma1, Qifu Li1,()   

  1. 1. Department of Neurology, the First Affiliated Hospital of Hainan Medical College, Key Laboratory of Tropical Brain Science Research and Translation, Hainan Province, Haikou 570102, China
  • Received:2023-10-12 Published:2024-02-01
  • Corresponding author: Qifu Li
引用本文:

刘婷, 杨逸昊, 李仙, 李丽娟, 马琳, 李其富. 重复经颅磁刺激治疗卒中后认知功能障碍的静息态功能磁共振研究进展[J]. 中华脑血管病杂志(电子版), 2024, 18(01): 81-85.

Ting Liu, Yihao Yang, Xian Li, Lijuan Li, Lin Ma, Qifu Li. Research progress on rs-fMRI in the post-stroke cognitive dysfunction after the treatment of repetitive transcranial magnetic stimulation[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2024, 18(01): 81-85.

卒中后认知功能障碍是指在卒中事件后出现并持续到6个月时仍存在的以认知功能障碍为特征的临床综合征。重复经颅磁刺激作为一种无创且安全的神经调控治疗技术已经广泛应用于临床,目前在治疗卒中后认知功能障碍方面已取得良好疗效,但其机制还有待于进一步明确。随着影像技术的发展,越来越多的研究利用静息态功能磁共振探究重复经颅磁刺激的治疗机制。由于治疗方案不同和研究样本量较小,各研究结果不完全相同。现就重复经颅磁刺激治疗卒中后认知功能障碍的静息态功能磁共振研究进展做一综述。

Post-stroke cognitive impairment is a clinical syndrome characterized by cognitive impairment that occurs after a stroke event and persists for up to 6 months. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive and safe neuroregulatory therapy, has been widely used in clinical practice. At present, it has a good effect in the treatment of post-stroke cognitive impairment, but its mechanism remains to be further clarified. With the development of imaging technology, more and more studies have been conducted to explore the therapeutic mechanism of rTMS using resting-state functional magnetic resonance imaging (rs-fMRI). Due to different treatment regimens and small study sample sizes, the results of each study are not consistent. This article reviews the research progress of rs-fMRI in post-stroke cognitive function with the treatment of rTMS.

1
汪凯, 董强, 郁金泰, 等. 卒中后认知障碍管理专家共识2021 [J]. 中国卒中杂志, 2021, 16(4): 376-389.
2
王俊. 中国卒中后认知障碍防治研究专家共识 [J]. 中国卒中杂志, 2020, 15(2): 158-166.
3
Lefaucheur JP, Aleman A, Baeken C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014-2018) [J]. Clin Neurophysiol, 2020, 131(2): 474-528.
4
Feng G, Jicheng L, Xiaohua H, et al. Repetitive transcranial magnetic stimulation ameliorates cognitive impairment by enhancing neurogenesis and suppressing apoptosis in the hippocampus in rats with ischemic stroke [J]. Front Physiol, 2017, 8: 559.
5
Hong J, Chen J, Li C, et al. High-frequency rTMS improves cognitive function by regulating synaptic plasticity in cerebral ischemic rats [J]. Neurochem Res, 2021, 46(2): 276-286.
6
Wang F, Geng X, Tao HY, et al. The restoration after repetitive transcranial magnetic stimulation treatment on cognitive ability of vascular dementia rats and its impacts on synaptic plasticity in hippocampal CA1 area [J]. J Mol Neurosci, 2010, 41(1): 145-155.
7
Domigan CK, Ziyad S, Iruela-Arispe ML. Canonical and noncanonical vascular endothelial growth factor pathways: new developments in biology and signal transduction [J]. Arterioscler Thromb Vasc Biol, 2015, 35(1): 30-39.
8
Zhang N, Xing M, Wang Y, et al. Repetitive transcranial magnetic stimulation enhances spatial learning and synaptic plasticity via the VEGF and BDNF-NMDAR pathways in a rat model of vascular dementia [J]. Neuroscience, 2015, 311: 284-291.
9
Jiang B, He D. Repetitive transcranial magnetic stimulation (rTMS) fails to increase serum brain-derived neurotrophic factor (BDNF) [J]. Neurophysiol Clin, 2019, 49(4): 295-300.
10
Luo J, Zheng H, Zhang L, et al. High-frequency repetitive transcranial magnetic stimulation (rTMS) improves functional recovery by enhancing neurogenesis and activating BDNF/TrkB signaling in ischemic rats [J]. Int J Mol Sci, 2017, 18(2): 455.
11
丁巧方, 李哲, 郭钢花, 等. 不同频率重复经颅磁刺激对脑卒中后认知障碍患者的影响 [J]. 中国康复, 2019, 34(10): 513-517.
12
Lu H, Zhang T, Wen M, et al. Impact of repetitive transcranial magnetic stimulation on post-stroke dysmnesia and the role of BDNF Val66Met SNP [J]. Med Sci Monit, 2015, 21: 761-768.
13
Kim BR, Chun MH, Kim DY, et al. Effect of high- and low-frequency repetitive transcranial magnetic stimulation on visuospatial neglect in patients with acute stroke: a double-blind, sham-controlled trial [J]. Arch Phys Med Rehabil, 2013, 94(5): 803-807.
14
Weiduschat N, Thiel A, Rubi-Fessen I, et al. Effects of repetitive transcranial magnetic stimulation in aphasic stroke: a randomized controlled pilot study [J]. Stroke, 2011, 42: 409-415.
15
Kaiser RH, Andrews-Hanna JR, Wager TD, et al. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity [J]. JAMA Psychiatry, 2015, 72(6): 603-611.
16
Panikratova YR, Vlasova RM, Akhutina TV, et al. Functional connectivity of the dorsolateral prefrontal cortex contributes to different components of executive functions [J]. Int J Psychophysiol, 2020, 151: 70-79.
17
Shang Y, Chang D, Zhang J, et al. Theta-burst transcranial magnetic stimulation induced functional connectivity changes between dorsolateral prefrontal cortex and default-mode-network [J]. Brain Imaging Behav, 2020, 14(5): 1955-1963.
18
Hu XY, Zhang T, Rajah GB, et al. Effects of different frequencies of repetitive transcranial magnetic stimulation in stroke patients with non-fluent aphasia: a randomized, sham-controlled study [J]. Neurol Res, 2018, 40(6): 459-465.
19
Lim J, Kang E, Paik N. Repetitive transcranial magnetic stimulation to hemispatial neglect in patients after stroke: an open-label pilot study [J]. J Rehabil Med, 2010, 42(5): 447-452.
20
Han K, Liu J, Tang Z, et al. Effects of excitatory transcranial magnetic stimulation over the different cerebral hemispheres dorsolateral prefrontal cortex for post-stroke cognitive impairment: a systematic review and meta-analysis [J]. Front Neurosci, 2023, 17: 1102311.
21
Zhang XQ, Li L, Huo JT, et al. Effects of repetitive transcranial magnetic stimulation on cognitive function and cholinergic activity in the rat hippocampus after vascular dementia [J]. Neural Regen Res, 2018, 13(8): 1384-1389.
22
Chen J, Zeng Y, Hong J, et al. Effects of HF-rTMS on microglial polarization and white matter integrity in rats with poststroke cognitive impairment [J]. Behav Brain Res, 2023, 439: 114242.
23
Kim BR, Kim DY, Chun MH, et al. Effect of repetitive transcranial magnetic stimulation on cognition and mood in stroke patients a double-blind, sham-controlled trial [J]. Am J Phys Med Rehabil, 2010, 89(5): 362-368.
24
Bi Y, Gong Z, Chen W, et al. Cerebral activity manipulation of low-frequency repetitive transcranial magnetic stimulation in post-stroke patients with cognitive impairment [J]. Front Neurol, 2022, 13: 951209.
25
Biswal BB, Mennes M, Zuo XN, et al. Toward discovery science of human brain function [J]. Proc Natl Acad Sci U S A, 2010, 107(10): 4734-4739.
26
Lv H, Wang Z, Tong E, et al. Resting-state functional mri: everything that nonexperts have always wanted to know [J]. AJNR Am J Neuroradiol, 2018, 39(8): 1390-1399.
27
Peng CY, Chen YC, Cui Y, et al. Regional coherence alterations revealed by resting-state fMRI in post-stroke patients with cognitive dysfunction [J]. PLoS One, 2016, 11: e0159574.
28
Wang J, Chen H, Liang H, et al. Low-frequency fluctuations amplitude signals exhibit abnormalities of intrinsic brain activities and reflect cognitive impairment in leukoaraiosis patients [J]. Med Sci Monit, 2019, 25: 5219-5228.
29
Liu C, Li C, Yin X, et al. Abnormal intrinsic brain activity patterns in patients with subcortical ischemic vascular dementia [J]. PLoS One, 2014, 9: e87880.
30
Liu J, Wang Q, Liu F, et al. Altered functional connectivity in patients with poststroke memory impairment: a resting fMRI study [J]. Exp Ther Med, 2017, 14(3): 1919-1928.
31
Miraglia F, Vecchio F, Marra C, et al. Small world index in default mode network predicts progression from mild cognitive impairment to dementia [J]. Int J Neural Syst, 2020, 30(2): 2050004.
32
Wang J, Chen Y, Liang H, et al. The role of disturbed small-world networks in patients with white matter lesions and cognitive impairment revealed by resting state function magnetic resonance images (rs-fMRI) [J]. Med Sci Monit, 2019, 25: 341-356.
33
Liu J, Qin W, Wang H, et al. Altered spontaneous activity in the default-mode network and cognitive decline in chronic subcortical stroke [J]. J Neurol Sci, 2014, 347(1-2): 193-198.
34
Allen EA, Damaraju E, Plis SM, et al. Tracking whole-brain connectivity dynamics in the resting state [J]. Cereb Cortex, 2014, 24(3): 663-676.
35
Bajaj S, Butler AJ, Drake D, et al. Functional organization and restoration of the brain motor-execution network after stroke and rehabilitation [J]. Front Hum Neurosci, 2015, 9: 173.
36
Jokinen H, Melkas S, Ylikoski R, et al. Post-stroke cognitive impairment is common even after successful clinical recovery [J]. Eur J Neurol, 2015, 22(9): 1288-1294.
37
Jilka SR, Scott G, Ham T, et al. Damage to the salience network and interactions with the default mode network [J]. J Neurosci, 2014, 34(33): 10798-10807.
38
Andrews-Hanna JR, Reidler JS, Sepulcre J, et al. Functional-anatomic fractionation of the brain's default network [J]. Neuron, 2010, 65(4): 550-562.
39
Ding X, Li CY, Wang QS, et al. Patterns in default-mode network connectivity for determining outcomes in cognitive function in acute stroke patients [J]. Neuroscience, 2014, 277: 637-646.
40
Vicentini JE, Weiler M, Casseb RF, et al. Subacute functional connectivity correlates with cognitive recovery six months after stroke [J]. Neuroimage Clin, 2021, 29: 102538.
41
Tuladhar AM, Snaphaan L, Shumskaya E, et al. Default mode network connectivity in stroke patients [J]. PLoS One, 2013, 8: e66556.
42
Zhang J, Li Z, Cao X, et al. Altered prefrontal-basal ganglia effective connectivity in patients with poststroke cognitive impairment [J]. Front Neurol, 2020, 11: 577482.
43
Brown CE, Li P, Boyd JD, et al. Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke [J]. J Neurosci, 2007, 27(15): 4101-4109.
44
Desowska A, Turner DL. Dynamics of brain connectivity after stroke [J]. Rev Neurosci, 2019, 30(6): 605-623.
45
Xue SW, Guo Y, Peng W, et al. Increased low-frequency resting-state brain activity by high-frequency repetitive TMS on the left dorsolateral prefrontal cortex [J]. Front Psychol, 2017, 8: 2266.
46
Liang P, Wang Z, Yang Y, et al. Functional disconnection and compensation in mild cognitive impairment: evidence from DLPFC connectivity using resting-state fMRI [J]. PLoS One, 2011, 6(7): 1-12.
47
Park JY, Kim YH, Chang WH, et al. Significance of longitudinal changes in the default-mode network for cognitive recovery after stroke [J]. Eur J Neurosci, 2014, 40(4): 2715-2722.
48
Li Y, Luo H,Yu Q, et al. Cerebral functional manipulation of repetitive transcranial magnetic stimulation in cognitive impairment patients after stroke: an fMRI study [J]. Front Neurol, 2020, 11: 977.
49
Yin M, Liu Y, Zhang L, et al. Effects of rTMS treatment on cognitive impairment and resting-state brain activity in stroke patients: a randomized clinical trial [J]. Front Neural Circuits, 2020, 14: 563777.
[1] 黄志毅, 赵娟. 重复经颅磁刺激联合分级运动想象训练对脑梗死后偏瘫患者运动功能及神经功能的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 102-107.
[2] 程俊凯, 罗耀文, 李娟, 张磊, 杨淑涵, 王彦刚. 重复经颅磁刺激上调DJ-1表达改善小鼠创伤性脑损伤后功能障碍的研究[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 261-268.
[3] 马良飞, 尹翎, 方婷, 曾西西, 佟佳璇, 马献昆. 重复经颅磁刺激联合虚拟现实技术对脑卒中后认知障碍的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 346-351.
[4] 杨钰琳, 常万鹏, 丁江涛, 徐红莉, 仵宵, 肖伯恒, 马丽虹. 重复经颅磁刺激对脑瘫患儿运动功能康复效果的Meta分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 327-334.
[5] 潘升超, 陈燕, 余程冬, 曹晓光. 重复经颅磁刺激技术在颅脑外伤康复中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 118-123.
[6] 邓艳媚, 龙耀斌, 李鑫, 莫丽华. 经颅磁刺激结合前庭康复训练对ADHD患儿注意力缺陷的影响及临床机制[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(01): 34-38.
[7] 张建萍, 邓海鹏, 焦黛妍, 赵洁. 高频重复经颅磁刺激联合肌电生物反馈治疗脑卒中后吞咽障碍的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 285-290.
[8] 李婷婷, 梁军军, 王玉琴, 刘双洁, 吕铭新. 对侧抑制性rTMS联合运动想象对脑卒中偏瘫患者肢体功能的康复效果[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(04): 210-216.
[9] 惠子欣, 张军. 弥散张量成像对重复经颅磁刺激治疗缺血性脑卒中偏瘫患者的疗效评估[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(04): 204-209.
[10] 程欣欣, 刘婉, 高润, 饶江, 俞佳雯, 张传文, 高黎明, 张玲玲, 刘莉. 具身运动想象联合常规康复对卒中后感觉运动网络影响的研究[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(04): 196-203.
[11] 潘惠, 王明, 杨忠, 杜向东. 低频重复经颅磁刺激辅助治疗伴不同特征抑郁症的对照研究[J]. 中华临床医师杂志(电子版), 2023, 17(05): 562-568.
[12] 黄爱茹, 付婧, 余茜. 多模块3D虚拟现实技术联合重复经颅磁刺激治疗卒中后认知功能障碍的效果[J]. 中华临床医师杂志(电子版), 2022, 16(11): 1089-1095.
[13] 杨轩, 石晴, 邱海斌, 黄强. 重复经颅磁刺激联合艾司唑仑对脑卒中失眠患者的疗效及其对血清细胞因子和神经递质的影响[J]. 中华临床医师杂志(电子版), 2022, 16(05): 395-399.
[14] 陈芸, 张乔阳, 张敏, 曹音, 董贯忠, 恽文伟, 杨海燕, 张伟媛. 高频重复经颅磁刺激联合认知行为治疗对脑卒中后焦虑和抑郁共病状态患者的影响[J]. 中华卫生应急电子杂志, 2022, 08(04): 205-210.
[15] 祁研, 张岩, 陈雪, 刘颖, 史楠. 探讨高低频交互rTMS对老年脑卒中偏瘫患者肢体功能、吞咽功能及日常生活活动能力的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 359-363.
阅读次数
全文


摘要