切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (06) : 586 -594. doi: 10.11817/j.issn.1673-9248.2024.06.010

基础研究

药物诱导亚低温对缺血性脑卒中的神经保护作用及DRP-1 调控线粒体功能在其中的潜在分子机制
江倩1,2, 王红蕊1,2, 朱玥荃1,2, 李响2, 耿晓坤1,2,(), 李凤武1,2,()   
  1. 1.101100 首都医科大学附属北京潞河医院神经研究所
    2.101100 首都医科大学附属北京潞河医院神经内科
  • 收稿日期:2024-05-11 出版日期:2024-12-01
  • 通信作者: 耿晓坤, 李凤武
  • 基金资助:
    国家自然科学基金青年项目(82101436)首都医科大学2022年度科技计划、社科计划一般项目(KM202210025002)北京市通州区区财政经费(2024)

Neuroprotective effect of drug-induced hypothermia in ischemic stroke and the potential mechanism of DRP-1-mediated mitochondrial function

Qian Jiang1,2, Hongrui Wang1,2, Yuequan Zhu1,2, Xiang Li2, Xiaokun Geng1,2,(), Fengwu Li1,2,()   

  1. 1.China-America Institute of Neuroscience,Beijing Luhe Hospital,Capital Medical University,Beijing 101100,China
    2.Department of Neurology,Beijing Luhe Hospital,Capital Medical University,Beijing 101100,China
  • Received:2024-05-11 Published:2024-12-01
  • Corresponding author: Xiaokun Geng, Fengwu Li
引用本文:

江倩, 王红蕊, 朱玥荃, 李响, 耿晓坤, 李凤武. 药物诱导亚低温对缺血性脑卒中的神经保护作用及DRP-1 调控线粒体功能在其中的潜在分子机制[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 586-594.

Qian Jiang, Hongrui Wang, Yuequan Zhu, Xiang Li, Xiaokun Geng, Fengwu Li. Neuroprotective effect of drug-induced hypothermia in ischemic stroke and the potential mechanism of DRP-1-mediated mitochondrial function[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2024, 18(06): 586-594.

目的

探讨药物诱导亚低温对缺血性脑卒中急性期损伤的神经保护作用及线粒体裂变动力相关蛋白1(DRP-1)调控线粒体功能在其中的潜在分子机制。

方法

45 只雄性SD 大鼠随机分为3 组,假手术组(sham 组)、大脑中动脉栓塞模型(MCAO)组和MCAO 模型+腹腔注射氯丙嗪联合异丙嗪(C+P)组,每组15 只。构建SD 大鼠2 h MCAO 模型,再灌注后即刻腹腔注射8 mg/kg C+P,并在再灌注后2 h 补充1/3 C+P 药量。在建立MCAO 模型前测量大鼠基础体温,并在腹腔注射C+P 药物即刻、给药后5 min、10 min、20 min、30 min、1 h、2 h、3 h、6 h、12 h 和24 h 分别测量大鼠体温。再灌注48 h 后应用三苯基氯化四氮唑(TTC)染色评价脑梗死体积;应用Ludmila Belayev 12 分和Longa 5 分评分评价短期神经功能缺损程度;再灌注后24 h 应用TUNEL 染色检测缺血半暗带细胞凋亡情况;并且应用ELISA 检测乳酸脱氢酶(LDH)、死亡细胞、ATP、活性氧(ROS)及线粒体呼吸链复合体(COX I-Ⅳ)的水平,评价细胞损伤情况和线粒体功能;此外,再灌注后24 h 应用实时荧光定量聚合酶链式反应和蛋白质印记法检测DRP-1 和线粒体裂变1 蛋白(Fis-1)的表达,评价线粒体裂变水平。多组间资料比较采用单因素方差分析,采用LSD-t 检验或Dunnett's T3 法进行组间两两比较。

结果

再灌注即刻给予C+P 能够诱导大鼠亚低温状态,5 min 内大鼠体温迅速下降,2 h 后体温降至最低[(33.5±0.3)℃],12 h 后体温恢复至正常水平。与MCAO 模型组比较,C+P 组大鼠脑梗死体积降低[(29.73±2.32)% vs(48.46±0.48)%],短期神经功能缺损程度降低[Longa 5 分评分:(2.0±0.1)分 vs(4.0±0.1)分;Ludmila Belayev 12 分评分:(5.0±0.3)分 vs(8.0±0.2)分],差异均具有统计学意义(5 分评分t=2.917,P=0.008;12 分评分t=2.475,P=0.029)。同时,与MCAO 模型组相比,C+P 组LDH、ATP、ROS 及线粒体呼吸链复合体(COX I-IV)的水平降低,细胞凋亡和死亡细胞减少,差异均具有统计学意义(P 均<0.05);此外,与MCAO 模型组相比,C+P 组DRP-1 磷酸化和Fis-1 的mRNA 和蛋白表达水平降低,差异均具有统计学意义(P 均<0.05)。

结论

C+P 诱导的亚低温通过抑制DRP-1 磷酸化和Fis-1 表达,抑制线粒体裂变,减轻线粒体功能障碍,减少细胞凋亡,在缺血性脑卒中后发挥神经保护作用。

Objective

To investigate the neuroprotective effect of drug-induced hypothermia in acute phase of ischemic stroke, as well as to elucidate the underlying mechanism involving DRP-1-mediated mitochondrial function.

Methods

A total of 45 adult male Sprague-Dawley rats were randomly assigned to three groups: sham operation (Sham), middle cerebral artery occlusion (MCAO), and MCAO with chlorpromazine and promethazine treatment (C+P) (n=15 per group).Rats underwent 2 h of MCAO followed by 24 h or 48 h reperfusion.C+P was administered at the onset of reperfusion at a dose of 8 mg/kg,with one-third of the original dose injected 2 hours later to potentiate the drug's effects.Body temperature was monitored at pre-MCAO, initial drug, and 5 min, 10 min, 20 min, 30 min, 1 h, 2 h, 3 h, 6 h, 12 h, 24 h after administration.Infarct volumes and neurological deficits were assessed using 2,3,5-triphenyltetrazolium chloride (TTC) staining and scoring systems at 48 hours.TUNEL staining was used to detected the apoptotic cell death at 24 h.The lactate dehydrogenase (LDH), cell death, ATP, reactive oxygen species (ROS)concentration, and mitochondrial respiratory chain complex (COX Ⅰ-Ⅳ) were evaluated by ELISA at 24 h.The mRNA and protein expressions of DRP-1 and Fis-1 were quantified by qPCR and western blotting at 24 h.LSD-t test or Dunnett's T3 method were used for inter-group comparisons.

Results

C+P administration(8 mg/kg) significantly reduced body temperature within 5 minutes post-MCAO in rats, reaching the lowest temperature [(33.5±0.3) ℃] after 2 hours, and maintaining a significantly reduced temperature for up to 12 hours before returning to normal.Compared to the MCAO group, C+P significantly reduced infarct volumes [(29.73±2.32)% vs (48.46±0.48)%] and neurological deficits[5 score: (2.0±0.1) vs (4.0±0.1);12 score: (5.0±0.3) vs (8.0±0.2); (5 score: t=2.917, P=0.008; 12 score: t=2.475, P=0.029)].C+P also significantly mitigated mitochondrial dysfunction (LDH, ATP, ROS and COX I-IV) and cell death apoptosis(P<0.05).mRNA and protein expression of DRP-1 and Fis-1 were both significantly reduced by C+P(P<0.05).

Conclusion

Our findings suggest that C+P-induced hypothermia exerts neuroprotective effects after ischemic stroke by inhibiting DRP-1 phosphorylation and Fis-1 expression, and reducing mitochondrial dysfunction and apoptosis.

表1 DRP-1 和Fis-1 引物序列
图1 大鼠24 h 内体温监测数据 注:MCAO 为大脑中动脉栓塞模型组;C+P 为大脑中动脉栓塞模型+腹腔注射氯丙嗪和异丙嗪(C+P)药物组
图2 2 组大鼠脑梗死体积和神经功能缺损评分结果。图a 为三苯基氯化四氮唑(TTC)染色脑组织病理图,图b~d 分别为2 组脑梗死体积、Longa 5 分和Ludmila Belayev 12 分评分比较 注:MCAO 为大脑中动脉栓塞模型组;C+P 为大脑中动脉栓塞模型+腹腔注射氯丙嗪和异丙嗪(C+P)药物组
图3 3 组大鼠细胞凋亡水平。图a 为TUNEL 染色图;图b~d 分别为TUNEL 染色结果、乳酸脱氢酶(LDH)水平和死亡细胞水平比较 注:sham 为假手术组;MCAO 为大脑中动脉栓塞模型组;C+P 为大脑中动脉栓塞模型+腹腔注射氯丙嗪和异丙嗪(C+P)药物组;DAPI 为细胞核染色图;Merge 为细胞核染色和TUNEL 染色合并图
图4 各组大鼠缺血半暗带脑组织线粒体功能水平比较。图a~f 分别为ATP、活性氧和线粒体呼吸链复合体(COXⅠ、COX Ⅱ、COX Ⅲ、COX Ⅳ)水平比较 注:sham 为假手术组;MCAO 为大脑中动脉栓塞模型组;C+P 为大脑中动脉栓塞模型+腹腔注射氯丙嗪和异丙嗪(C+P)药物组
图5 各组大鼠缺血半暗带脑组织线粒体裂变动力相关蛋白1(DRP-1)和线粒体裂变蛋白(Fis-1)表达水平比较。图a、b 为DRP-1 mRNA 表达和Fis-1 mRNA 表达水平比较;图c 为蛋白条带图;图d~f 为DRP-1 蛋白、p-DRP-1 蛋白和Fis-1 蛋白表达水平比较 注:sham 为假手术组;MCAO 为大脑中动脉栓塞模型组;C+P 为大脑中动脉栓塞模型+腹腔注射C+P 药物组
1
Sun D, Guo X, Nguyen TN, et al.Alberta stroke program early computed tomography score, infarct core volume, and endovascular therapy outcomes in patients with large infarct: a secondary analysis of the ANGEL-ASPECT trial [J].JAMA Neurol, 2024, 81(1): 30-38.
2
Binder NF, El Amki M, Gluck C, et al.Leptomeningeal collaterals regulate reperfusion in ischemic stroke and rescue the brain from futile recanalization [J].Neuron, 2024, 112(9): 1456-1472.
3
Forreider B, Pozivilko D, Kawaji Q, et al.Hibernation-like neuroprotection in stroke by attenuating brain metabolic dysfunction [J].Prog Neurobiol, 2017, 157: 174-187.
4
Tejerina Álvarez EE, Lorente Balanza JÁ.Temperature management in acute brain injury: a narrative review [J].Med Intensiva (Engl Ed),2024, 48(6): 341-355.
5
Liu K, Khan H, Geng X, et al.Pharmacological hypothermia: a potential for future stroke therapy? [J].Neurol Res, 2016, 38(6): 478-490.
6
Guo S, Li F, Wills M, et al.Chlorpromazine and Promethazine (C+P)Reduce Brain Injury after Ischemic Stroke through the PKC-delta/NOX/MnSOD Pathway [J].Mediators Inflamm, 2022, 2022: 6886752.
7
Li C, Chen C, Qin H, et al.The role of mitochondrial dynamin in stroke [J].Oxid Med Cell Longev, 2022, 2022: 2504798.
8
张红明, 曾子玲, 李晓燕.线粒体依赖的凋亡通路与缺血性脑卒中 [J].中华老年心脑血管病杂志, 2013, 15(7): 778-780.
9
Jiang Q, Ding Y, Li F, et al.Modulation of NLRP3 inflammasomerelated-inflammation via RIPK1/RIPK3-DRP1 or HIF-1alpha signaling by phenothiazine in hypothermic and normothermic neuroprotection after acute ischemic stroke [J].Redox Biol, 2024, 73: 103169.
10
Mei X, Li Y, Wu J, et al.Dulaglutide restores endothelial progenitor cell levels in diabetic mice and mitigates high glucose-induced endothelial injury through SIRT1-mediated mitochondrial fission [J].Biochem Biophys Res Commun, 2024, 716: 150002.
11
韦辰, 王士雷, 孔宪刚, 等.补阳还五汤对脑缺血再灌注损伤大鼠线粒体分裂蛋白Drp1、Fis1 及细胞色素C 表达的影响 [J].陕西中医, 2017, 38(10): 1481-1483.
12
Liu W, Fan Y, Ding H, et al.Normothermic machine perfusion attenuates hepatic ischaemia-reperfusion injury by inhibiting CIRPmediated oxidative stress and mitochondrial fission [J].J Cell Mol Med, 2021, 25(24): 11310-11321.
13
Xue RQ, Sun L, Yu XJ, et al.Vagal nerve stimulation improves mitochondrial dynamics via an M(3) receptor/CaMKKbeta/AMPK pathway in isoproterenol-induced myocardial ischaemia [J].J Cell Mol Med, 2017, 21(1): 58-71.
14
陈超, 聂郁林, 陆心恬, 等.改良线栓法建立SD 大鼠局灶性脑缺血再灌注模型 [J].神经损伤与功能重建, 2023, 18(10): 569-573.
15
Li F, Geng X, Yip J, et al.Therapeutic target and cell-signal communication of chlorpromazine and promethazine in attenuating blood-brain barrier disruption after ischemic stroke [J].Cell Transplant, 2019, 28(2): 145-156.
16
Liao J, Li Y, Fan L, et al.Bioactive ceria nanoenzymes target mitochondria in reperfusion injury to treat ischemic stroke [J].ACS Nano, 2024.Online ahead of print.
17
卢小叶, 吕倩忆, 李棋龙, 等.Zea-longa 评分与改良Garcia 评分应用于针刺治疗CIRI 大鼠神经功能缺损评估的研究 [J].湖南中医药大学学报, 2021, 41(9): 1356-1360.
18
王鹏成, 任长虹, 曾现伟, 等.4 种神经功能评分法在大鼠局灶性脑缺血模型中的比较研究 [J].潍坊医学院学报, 2014, 2: 147-151.
19
Staples JF, Mathers KE, Duffy BM.Mitochondrial metabolism in hibernation: regulation and implications [J].Physiology (Bethesda),2022, 37(5): 0.
20
Vercellino I, Sazanov LA.The assembly, regulation and function of the mitochondrial respiratory chain [J].Nat Rev Mol Cell Biol, 2022,23(2): 141-161.
21
Chen W, Huang J, Hu Y, et al.Mitochondrial transfer as a therapeutic strategy against ischemic stroke [J].Transl Stroke Res, 2020, 11(6):1214-1228.
22
An H, Zhou B, Ji X.Mitochondrial quality control in acute ischemic stroke [J].J Cereb Blood Flow Metab, 2021, 41(12): 3157-3170.
23
Chouchani ET, Pell VR, Gaude E, et al.Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS [J].Nature, 2014, 515(7527): 431-435.
24
Chu Q, Gu X, Zheng Q, et al.Mitochondrial mechanisms of apoptosis and necroptosis in liver diseases [J].Anal Cell Pathol (Amst), 2021,2021: 8900122.
25
He Z, Ning N, Zhou Q, et al.Mitochondria as a therapeutic target for ischemic stroke [J].Free Radic Biol Med, 2020, 146: 45-58.
26
Kleele T, Rey T, Winter J, et al.Distinct fission signatures predict mitochondrial degradation or biogenesis [J].Nature, 2021, 593(7859):435-439.
27
Wu Q, Liu J, Mao Z, et al.Ligustilide attenuates ischemic stroke injury by promoting Drp1-mediated mitochondrial fission via activation of AMPK [J].Phytomedicine, 2022, 95: 153884.
28
Fix DK, VanderVeen BN, Counts BR, et al.Regulation of skeletal muscle DRP-1 and FIS-1 protein expression by IL-6 signaling [J].Oxid Med Cell Longev, 2019, 2019: 8908457.
29
Ali M, Tabassum H, Alam MM, et al.N-acetyl-L-cysteine ameliorates mitochondrial dysfunction in ischemia/reperfusion injury via attenuating Drp-1 mediated mitochondrial autophagy [J].Life Sci,2022, 293: 120338.
30
Yang M, Deng S, Jiang J, et al.Oxytocin improves intracerebral hemorrhage outcomes by suppressing neuronal pyroptosis and mitochondrial fission [J].Stroke, 2023, 54(7): 1888-1900.
[1] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[2] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[3] 孙鸿坤, 艾虹, 陈正. 内质网应激介导的牙周炎骨改建失衡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 211-218.
[4] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[5] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[6] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[7] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[8] 杨金朔, 吴桥伟, 王春雷, 史怀璋. 脑血管内支架成形术后再狭窄的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 174-179.
[9] 李景德, 张保艳, 卢培刚, 李博. 法舒地尔对大鼠急性脊髓损伤后神经细胞凋亡和BCL-2蛋白表达水平的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 65-70.
[10] 吉莉, 苏云楠, 王斌, 沈滔, 刘团结, 毛蕾, 徐玉萍, 张婷, 王博. 急性缺血性脑卒中患者脑白质微结构改变对长期认知功能损伤的预测价值研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 193-200.
[11] 高振轩, 谢晨, 曹绍东, 甘中伟, 周倍, 罗朝川, 王子齐, 葛煜彤, 张伟光. 高分辨率核磁共振在颅颈大动脉狭窄介入治疗中的临床应用进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(02): 112-119.
[12] 尹晓晴, 赵子萱, 杨帆, 敖峰, 林勇. D型人格与前循环急性缺血性脑卒中患者预后的相关性[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 206-211.
[13] 潘鑫, 黄晓云, 王超, 顾慧, 唐加波, 王鹏, 崔恒熙, 李政. 院前亚低温结合院内溶栓救治急性脑梗死的效果[J/OL]. 中华卫生应急电子杂志, 2024, 10(03): 145-148.
[14] 李小勇, 郭海志, 赵洋. QSM 联合SWI 预测急性缺血性脑卒中患者EVT 后神经功能的价值[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 549-555.
[15] 吴婷婷, 张薇, 何雅琪, 沈海清, 路敬叶, 张艳. 老年缺血性脑卒中患者早发型卒中后认知障碍发生情况及其影响因素分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 573-579.
阅读次数
全文


摘要