切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2025, Vol. 19 ›› Issue (03) : 220 -227. doi: 10.3877/cma.j.issn.1673-9248.2025.03.008

基础研究

王不留行黄酮苷对小鼠缺血性脑损伤的影响
孙攀喜1,2, 魏丽丽2, 陈勇1,(), 樊东升1,()   
  1. 1 100191 北京大学第三医院神经内科
    2 832000 新疆 石河子,石河子大学医学院 新疆地方与民族高发病教育部重点实验室
  • 收稿日期:2024-11-10 出版日期:2025-06-01
  • 通信作者: 陈勇, 樊东升
  • 基金资助:
    国家自然科学基金项目(81471184); 北京大学第三医院院重点项目(BYSYZD2021004)

Effects of vaccarin on ischemic brain injury in mice

Panxi Sun1,2, Lili Wei2, Yong Chen,1(), Dongsheng Fan,1()   

  1. 1 Department of Neurology, Peking University Third Hospital, Beijing 100191, China
    2 Shihezi University School of Medicine, Xinjiang Key Laboratory of Regional and Ethnic High-incidence Diseases, Ministry of Education, Shihezi 832000, China
  • Received:2024-11-10 Published:2025-06-01
  • Corresponding author: Yong Chen, Dongsheng Fan
引用本文:

孙攀喜, 魏丽丽, 陈勇, 樊东升. 王不留行黄酮苷对小鼠缺血性脑损伤的影响[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(03): 220-227.

Panxi Sun, Lili Wei, Yong Chen, Dongsheng Fan. Effects of vaccarin on ischemic brain injury in mice[J/OL]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2025, 19(03): 220-227.

目的

探讨王不留行黄酮苷对小鼠脑缺血性脑损伤的影响。

方法

通过GeneCard、Swiss Target Prediction、Targetnet、Pharmmapper和TTD等数据库分别对王不留行黄酮苷和缺血性脑损伤的靶点进行预测并取二者交集(检索日期:2024年10月30日);通过Sting平台建立交集靶点的蛋白相互作用(PPI)网络;采用Cytoscape软件进行PPI网络可视化处理;通过DAVID数据库和微生信在线基因功能富集分析工具对王不留行黄酮苷和缺血性脑损伤的交集靶点进行基因本体论(GO)和全基因组及代谢途径(KEGG)富集分析;利用AutodockVina软件将王不留行黄酮苷与PPI网络图中核心靶点蛋白进行分子对接。在动物实验中,通过制备小鼠大脑中动脉远端闭塞模型模拟脑缺血,造模后给予腹腔注射10/20/40 mg/kg的王不留行黄酮苷5 d,并分别在造模后1,3,5 d进行神经功能评分和转棒实验,第5天给药结束后进行2,3,5-氯化三苯基四氮唑(TTC)染色和病理切片染色,验证王不留行黄酮苷对小鼠脑缺血损伤的作用。

结果

通过各数据库检索去重取交集后获得王不留行黄酮苷和缺血性脑卒中(IS)的交集靶点,利用Sting平台建立交集靶点的PPI网络共获取63个交集靶点;GO富集和KEGG富集分析结果显示,王不留行黄酮苷主要对缺氧反应、炎症和凋亡等生物过程进行调控,并且可能通过血管内皮生长因子(VEGF)和白介素(IL)-17等信号通路作用于缺血性脑卒中;分子对接结果显示其与degree值≥40的核心靶点都有很强的结合能,其结合能均<-7 kcal/mol。动物实验表明,王不留行黄酮苷可以降低脑缺血小鼠的改良神经功能缺损(mNSS)评分,延长其在棒时间,差异均具有统计学意义(P<0.05或P<0.01);与假手术组相比,王不留行黄酮苷干预后可明显减小小鼠脑梗死体积,差异具有统计学意义(P<0.05或P<0.01);病理切片染色也表明,王不留行黄酮苷可明显抑制神经元数量减少并改善神经元细胞的形态;尼氏小体数量丢失也明显减少。

结论

王不留行黄酮苷能够有效减轻小鼠缺血后脑组织损伤,其可能通过多通路多靶点对缺血性脑损伤发挥保护作用。

Objective

To investigate the neuroprotective effect of vccarin on ischemic brain injury in mice.

Methods

Potential targets of vaccarin and ischemic brain injury were predicted using databases such as GeneCard, Swiss Target Prediction, Targetnet, Pharmmapper, and TTD (search date: October 30, 2024). Intersecting targets were identified and analyzed via protein-protein interaction (PPI) network construction (STRING database; visualization with Cytoscape). Functional enrichment analysis (GO and KEGG pathways) was performed using DAVID and MicrobeDB. Molecular docking (AutoDock Vina) assessed binding affinities between vaccarin and core targets (degree ≥40). In animal experiments, focal cerebral ischemia was induced in mice via distal middle cerebral artery occlusion (dMCAO). Vaccarin (10, 20, 40 mg/kg) or vehicle was administered intraperitoneally for 5 days post-surgery. Neurological function scores and rotarod tests were performed on days 1, 3, and 5 post-surgery. After drug administration on day 5, triphenyltetrazolium chloride (TTC) staining and histopathological section staining were performed to verify the effects of vaccarin on ischemic brain injury in mice.

Results

After removing duplicates and obtaining the intersection of the targets, a total of 63 overlapping targets of vaccarin and ischemic stroke (IS) were identified. The PPI network of the intersecting targets was constructed using the Sting platform. GO and KEGG enrichment analysis indicated that vaccarin primarily regulated biological processes such as hypoxia response, inflammation, and apoptosis, and Highlighted VEGF and IL-17 signaling pathways. Molecular docking results showed that the binding energies of vaccarin with core targets (degree≥40) were strong, with binding energies all less than -7 kcal/mol. In animal experiments, vaccarin significantly reduced the mNSS neurological scores and prolonged the time spent on the rotarod in ischemic mice, with statistically significant differences (P<0.05 or P<0.01). Compared to the sham group, vaccarin intervention significantly reduced the infarct volume in mice, with statistical significance (P<0.05 or P<0.01). Pathological staining showed that vaccarin significantly alleviated the loss of neurons and improved neuronal morphology. The loss of Nissl bodies was also notably reduced.

Conclusion

Vaccarin confers neuroprotection in ischemic brain injury by modulating hypoxia-inflammatory-apoptosis pathways via multi-target interactions, with VEGF and IL-17 signaling as key mechanistic components.

图1 王不留行黄酮苷和IS靶点预测结果分析。图a为药物-疾病靶点韦恩图,其中,蓝色代表王不留行黄酮苷的靶点;黄色代表IS的靶点;两者交集为共同靶点;图b为药物-疾病蛋白相互作用网络
图2 GO和KEGG富集分析气泡图。图a显示GO富集分析前20个生物学功能;图b显示KEGG富集分析前20条信号通路。其中,X轴表示基因比率(GeneRatio),Y轴表示富集生物学功能名称和信号通路名称,圆圈大小表示通路中富集的基因数量,圆圈颜色表示-log10P值) 注:Go为基因本体论;KEGG为全基因组及代谢途径
图3 王不留行黄酮苷和ALB、TNF、AKT1和CASP3对接示意图。图a为ALB与王不留行黄酮苷对接图;图b为TNF与王不留行黄酮苷对接图;图c为AKT1与王不留行黄酮苷对接图;图d为CASP3与王不留行黄酮苷对接图 注:ALB为血清白蛋白;TNF为肿瘤坏死因子;AKT1为蛋白激酶B;CASP3为半胱氨酸-天冬氨酸蛋白酶
图4 各组小鼠mNSS评分和转棒实验检测结果比较。图a为术后第1、3、5天小鼠的mNSS评分;图b为术后第1、3、5天小鼠在转棒实验中在棒时间。与sham组比较:**P<0.01,***P<0.001;与dMCAO组比较:#P<0.05,##P<0.01,###P<0.001(n=10) 注:mNSS为改良神经功能缺损评分;sham为假手术组;dMCAO为大脑中动脉远端闭塞组;dMCAO+L/M/H为大脑中动脉远端闭塞+王不留行黄酮苷10/20/40 mg/kg组
图5 各组小鼠TTC染色结果比较。图a为术后第5天各组小鼠TTC染色结果代表图;图b为术后第5天各组小鼠TTC染色结果统计图。与sham组比较:***P<0.001;与dMCAO组比较:#P<0.05(n=5) 注:TTC为2,3,5-氯化三苯基四氮唑;sham为假手术组;dMCAO为大脑中动脉远端闭塞组;dMCAO+L/M/H为大脑中动脉远端闭塞+王不留行黄酮苷10/20/40 mg/kg组
图6 脑缺血小鼠脑组织病理切片染色图。图a为HE染色,可见神经元排列紊乱,数量明显减少,出现核固缩、碎裂或溶解等;图b为Nissl染色,可见尼氏小体数量明显减少或消失,形状变细或拉长 注:sham为假手术组;dMCAO为大脑中动脉远端闭塞组;dMCAO+L/M/H为大脑中动脉远端闭塞+王不留行黄酮苷10/20/40 mg/kg组(n=3)
1
Feske SK. Ischemic stroke[J]. Am J Med, 2021, 134(12): 1457-1464.
2
Hafez S, Hoda MN, Guo X, et al. Comparative analysis of different methods of ischemia/reperfusion in hyperglycemic stroke outcomes: interaction with tPA[J]. Transl Stroke Res, 2015, 6(3): 171-180.
3
Sun J, Yu X, Hou B, et al. Vaccarin enhances intestinal barrier function in type 2 diabetic mice[J]. Eur J Pharmacol, 2021, 908: 174375.
4
邓家刚, 郑作文, 周雅君, 等. 平性活血药对正常大鼠微循环及相关活性物质的影响[J]. 中华中医药学刊, 2012, 30(8): 1703-1706.
5
Zhu X, Meng Y, Zhang Y, et al. Vaccarin alleviates septic cardiomyopathy by potentiating NLRP3 palmitoylation and inactivation[J]. Phytomedicine, 2024, 131: 155771.
6
Zhu X, Lei Y, Tan F, et al. Vaccarin protects human microvascular endothelial cells from apoptosis via attenuation of HDAC1 and oxidative stress[J]. Eur J Pharmacol, 2017, 818: 371-380.
7
Schnabel RB, Haeusler KG, Healey JS, et al. Searching for atrial fibrillation poststroke[J]. Circulation, 2019, 140(22): 1834-1850.
8
Datta A, Sarmah D, Mounica L, et al. Cell death pathways in ischemic stroke and targeted pharmacotherapy[J]. Transl Stroke Res, 2020, 11(6): 1185-1202.
9
Xu H, Wang E, Chen F, et al. Neuroprotective phytochemicals in experimental ischemic stroke: mechanisms and potential clinical applications[J]. Oxid Med Cell Longevity, 2021, 2021: 6687386.
10
Lei L, Gong Y, Lei Y, et al. Vaccarin prevents ox-LDL-induced HUVEC EndMT, inflammation and apoptosis by suppressing ROS/p38 MAPK signaling[J]. Am J Transl Res, 2019, 11: 2140-2154.
11
Zhu X, Meng X, Du X, et al. Vaccarin suppresses diabetic nephropathy through inhibiting the EGFR/ERK1/2 signaling pathway[J]. Acta Biochim Biophys Sin, 2024, 56(12): 1860-1874.
12
Hou B, Cai W, Chen T, et al. Vaccarin hastens wound healing by promoting angiogenesis via activation of MAPK/ERK and PI3K/AKT signaling pathways in vivo[J]. Acta Cir Bras, 2019, 34(12): e201901202.
13
Frijns CJM, Kappelle LJ. Inflammatory cell adhesion molecules in ischemic cerebrovascular disease[J]. Stroke, 2002, 33(8): 2115-2122.
14
Manukjan N, Majcher D, Leenders P, et al. Hypoxic oligodendrocyte precursor cell-derived VEGFA is associated with blood–brain barrier impairment[J]. Acta Neuropathol Commun, 2023, 11(1): 128.
15
Ni H, Li J, Zheng J, et al. Cardamonin attenuates cerebral ischemia/reperfusion injury by activating the HIF‐1α/VEGFA pathway[J]. Phytother Res, 2022, 36(4): 1736-1747.
16
Zeng X, Li J, Shan W, et al. Gut microbiota of old mice worsens neurological outcome after brain ischemia via increased valeric acid and IL-17 in the blood[J]. Microbiome, 2023, 11(1): 204.
17
Wu X, Liu H, Wang J, et al. The m6A methyltransferase METTL3 drives neuroinflammation and neurotoxicity through stabilizing BATF mRNA in microglia[J]. Cell Death Differ, 2024-06, Epub ahead of print.
18
Zhu H, Sun Y, Du Y, et al. Albumin-seeking near-infrared-Ⅱ probe evaluating blood-brain barrier disruption in stroke[J]. J Nanobiotechnol, 2024, 22(1): 742.
19
Zhang L, Cui H, Hu W, et al. Targeting MAD2B as a strategy for ischemic troke therapy[J]. J Adv Res, 2024-07, Epub ahead of print.
20
Liu D, Wu W, Wang T, et al. Lithocarpus polystachyus Rehd. ameliorates cerebral ischemia/reperfusion injury through inhibiting PI3K/AKT/NF-κB pathway and regulating NLRP3-mediated pyroptosis[J]. Front Pharmacol, 2024, 15: 1365642.
21
Zhu X, Han X, Wang J. Sufentanil-induced Nrf2 protein ameliorates cerebral ischemia-reperfusion injury through suppressing neural ferroptosis[J]. Int J Biol Macromol, 2024, 279(Pt 1): 135109.
22
Wang Y, Yin Q, Yang D, et al. LCP1 knockdown in monocyte-derived macrophages: mitigating ischemic brain injury and shaping immune cell signaling and metabolism[J]. Theranostics, 2024, 14(1): 159-175.
[1] 林迳苍, 黄煌, 张少明, 许相洋, 黄建强. 金纳多、姜黄素对缺氧缺血性脑损伤新生大鼠脑基质金属蛋白酶-9表达的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2013, 09(05): 636-641.
[2] 陈凌梅, 李炜如. 地塞米松及葡萄糖对缺血缺氧性脑损伤新生大鼠血糖和脑ATP生成率及ATP酶分解活性的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2007, 03(03): 145-148.
[3] 刘玲, 陈燕惠, 陈达光. 早期干预对宫内缺氧缺血大鼠脑电波及存活神经元数目的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2007, 03(02): 91-91.
[4] 杨钊, 姚裕家, 付雪梅. 新生鼠缺氧缺血损伤脑组织水通道蛋白-4表达及意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2007, 03(01): 16-16.
[5] 朱薇薇, 孙若鹏, 王莹. 新生儿缺氧缺血性脑损伤血胃动素和促胃液素水平的相关性研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2006, 02(05): 275-278.
[6] 张可颖, 冀雨薇, 付章宁, 张益帆, 王晓晨, 杨滟, 陈香美, 蔡广研, 洪权. 人参皂苷Rb1 预处理间充质干细胞的转录组分析及急性肾损伤治疗关键基因挖掘[J/OL]. 中华肾病研究电子杂志, 2025, 14(01): 26-33.
[7] 于芳宁, 刘武, 高艺玮, 张宁, 李心怡, 王薇, 沈潜. 钩藤-牛膝药对治疗肾血管性高血压的潜在分子机制[J/OL]. 中华肾病研究电子杂志, 2023, 12(02): 74-80.
[8] 金美玲, 李典耕, 张伟光, 尹智炜, 杨洪娟. 基于网络药理学和分子对接研究益肾健脾利水方治疗肾小球肾炎的作用机制[J/OL]. 中华肾病研究电子杂志, 2021, 10(04): 189-197.
[9] 胡天祥, 黄贵锐, 毛炜, 黎创, 徐鹏, 田瑞敏, 谢晨. 基于网络药理学探讨益肾化湿颗粒治疗慢性肾小球肾炎的机制[J/OL]. 中华肾病研究电子杂志, 2021, 10(04): 181-188.
[10] 俞俊霞, 台宗光, 程婷婷, 朱全刚. 红花平疣颗粒治疗扁平疣的网络药理学分析及羟基红花黄色素A的含量测定[J/OL]. 中华临床医师杂志(电子版), 2023, 17(12): 1270-1276.
[11] 郭文秀, 吴胜男, 王小芸, 张敏. 基于网络药理学的百部联合川贝母治疗肺结核的作用机制研究[J/OL]. 中华临床医师杂志(电子版), 2023, 17(03): 335-342.
[12] 陈弦, 孔俊虹, 沙晨曦, 龚楚桥. 基于网络药理学探讨脉通饮治疗冠心病的作用机制研究[J/OL]. 中华临床医师杂志(电子版), 2021, 15(11): 882-889.
[13] 黄楠, 肖天池, 曾成粤, 莫乔惠, 张丽嬴, 徐淼源, 邓小燕, 梁晓丽. 基于网络药理学和分子对接探究桑菊感冒颗粒抗甲型H1N1流感的活性成分及作用机制[J/OL]. 中华临床实验室管理电子杂志, 2023, 11(04): 221-229.
[14] 葛友涛, 蒋秋子, 卞廷松, 肖倩倩. 中药复方治疗男性迟发性性腺功能减退症的组方规律及分子机制[J/OL]. 中华老年病研究电子杂志, 2023, 10(03): 43-50.
[15] 杨毅, 申珅, 万孟夏, 张拥波. 术前外周血炎症指标对颈动脉支架置入术后同侧新发无症状缺血性脑损伤的预测价值[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(01): 13-18.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?