1 |
Feske SK. Ischemic stroke[J]. Am J Med, 2021, 134(12): 1457-1464.
|
2 |
Hafez S, Hoda MN, Guo X, et al. Comparative analysis of different methods of ischemia/reperfusion in hyperglycemic stroke outcomes: interaction with tPA[J]. Transl Stroke Res, 2015, 6(3): 171-180.
|
3 |
Sun J, Yu X, Hou B, et al. Vaccarin enhances intestinal barrier function in type 2 diabetic mice[J]. Eur J Pharmacol, 2021, 908: 174375.
|
4 |
邓家刚, 郑作文, 周雅君, 等. 平性活血药对正常大鼠微循环及相关活性物质的影响[J]. 中华中医药学刊, 2012, 30(8): 1703-1706.
|
5 |
Zhu X, Meng Y, Zhang Y, et al. Vaccarin alleviates septic cardiomyopathy by potentiating NLRP3 palmitoylation and inactivation[J]. Phytomedicine, 2024, 131: 155771.
|
6 |
Zhu X, Lei Y, Tan F, et al. Vaccarin protects human microvascular endothelial cells from apoptosis via attenuation of HDAC1 and oxidative stress[J]. Eur J Pharmacol, 2017, 818: 371-380.
|
7 |
Schnabel RB, Haeusler KG, Healey JS, et al. Searching for atrial fibrillation poststroke[J]. Circulation, 2019, 140(22): 1834-1850.
|
8 |
Datta A, Sarmah D, Mounica L, et al. Cell death pathways in ischemic stroke and targeted pharmacotherapy[J]. Transl Stroke Res, 2020, 11(6): 1185-1202.
|
9 |
Xu H, Wang E, Chen F, et al. Neuroprotective phytochemicals in experimental ischemic stroke: mechanisms and potential clinical applications[J]. Oxid Med Cell Longevity, 2021, 2021: 6687386.
|
10 |
Lei L, Gong Y, Lei Y, et al. Vaccarin prevents ox-LDL-induced HUVEC EndMT, inflammation and apoptosis by suppressing ROS/p38 MAPK signaling[J]. Am J Transl Res, 2019, 11: 2140-2154.
|
11 |
Zhu X, Meng X, Du X, et al. Vaccarin suppresses diabetic nephropathy through inhibiting the EGFR/ERK1/2 signaling pathway[J]. Acta Biochim Biophys Sin, 2024, 56(12): 1860-1874.
|
12 |
Hou B, Cai W, Chen T, et al. Vaccarin hastens wound healing by promoting angiogenesis via activation of MAPK/ERK and PI3K/AKT signaling pathways in vivo[J]. Acta Cir Bras, 2019, 34(12): e201901202.
|
13 |
Frijns CJM, Kappelle LJ. Inflammatory cell adhesion molecules in ischemic cerebrovascular disease[J]. Stroke, 2002, 33(8): 2115-2122.
|
14 |
Manukjan N, Majcher D, Leenders P, et al. Hypoxic oligodendrocyte precursor cell-derived VEGFA is associated with blood–brain barrier impairment[J]. Acta Neuropathol Commun, 2023, 11(1): 128.
|
15 |
Ni H, Li J, Zheng J, et al. Cardamonin attenuates cerebral ischemia/reperfusion injury by activating the HIF‐1α/VEGFA pathway[J]. Phytother Res, 2022, 36(4): 1736-1747.
|
16 |
Zeng X, Li J, Shan W, et al. Gut microbiota of old mice worsens neurological outcome after brain ischemia via increased valeric acid and IL-17 in the blood[J]. Microbiome, 2023, 11(1): 204.
|
17 |
Wu X, Liu H, Wang J, et al. The m6A methyltransferase METTL3 drives neuroinflammation and neurotoxicity through stabilizing BATF mRNA in microglia[J]. Cell Death Differ, 2024-06, Epub ahead of print.
|
18 |
Zhu H, Sun Y, Du Y, et al. Albumin-seeking near-infrared-Ⅱ probe evaluating blood-brain barrier disruption in stroke[J]. J Nanobiotechnol, 2024, 22(1): 742.
|
19 |
Zhang L, Cui H, Hu W, et al. Targeting MAD2B as a strategy for ischemic troke therapy[J]. J Adv Res, 2024-07, Epub ahead of print.
|
20 |
Liu D, Wu W, Wang T, et al. Lithocarpus polystachyus Rehd. ameliorates cerebral ischemia/reperfusion injury through inhibiting PI3K/AKT/NF-κB pathway and regulating NLRP3-mediated pyroptosis[J]. Front Pharmacol, 2024, 15: 1365642.
|
21 |
Zhu X, Han X, Wang J. Sufentanil-induced Nrf2 protein ameliorates cerebral ischemia-reperfusion injury through suppressing neural ferroptosis[J]. Int J Biol Macromol, 2024, 279(Pt 1): 135109.
|
22 |
Wang Y, Yin Q, Yang D, et al. LCP1 knockdown in monocyte-derived macrophages: mitigating ischemic brain injury and shaping immune cell signaling and metabolism[J]. Theranostics, 2024, 14(1): 159-175.
|