| 1 |
Takahashi T. Novel synaptic plasticity enhancer drug to augment functional recovery with rehabilitation [J]. Curr Opin Neurol, 2019, 32(6): 822-827.
|
| 2 |
高飞, 蔡厚德. 胼胝体调节大脑两半球相互作用的机制 [J]. 心理科学进展, 2013, 21(7): 1200-1212.
|
| 3 |
Norata D, Musumeci G, Todisco A, et al. Bilateral median nerve stimulation and high-frequency oscillations unveil interhemispheric inhibition of primary sensory cortex [J]. Clin Neurophysiol, 2024, 165: 154-165.
|
| 4 |
Sato T, Nakamura Y, Takeda A, et al. Lesion area in the cerebral cortex determines the patterns of axon rewiring of motor and sensory corticospinal tracts after stroke [J]. Front Neurosci, 2021, 15: 737034.
|
| 5 |
Di Pino G, Pellegrino G, Assenza G, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation [J]. Nat Rev Neurol, 2014, 10(10): 597-608.
|
| 6 |
Di Pino G, Di Lazzaro V. The balance recovery bimodal model in stroke patients between evidence and speculation: do recent studies support it? [J]. Clin Neurophysiol, 2020, 131(10): 2488-2490.
|
| 7 |
Sirtori V, Corbetta D, Moja L, et al. Constraint-induced movement therapy for upper extremities in stroke patients [J]. Cochrane Database Syst Rev, 2009(4): D4433.
|
| 8 |
Hakkennes S, Keating JL. Constraint-induced movement therapy following stroke: a systematic review of randomised controlled trials [J]. Aust J Physiother, 2005, 51(4): 221-231.
|
| 9 |
Liepert J. Evidence-based therapies for upper extremity dysfunction [J]. Curr Opin Neurol, 2010, 23(6): 678-682.
|
| 10 |
Morris DM, Taub E, Mark VW. Constraint-induced movement therapy: characterizing the intervention protocol [J]. Eura Medicophys, 2006, 42(3): 257-268.
|
| 11 |
Taub E, Uswatte G, Mark VW, et al. Method for enhancing real-world use of a more affected arm in chronic stroke: transfer package of constraint-induced movement therapy [J]. Stroke, 2013, 44(5): 1383-1388.
|
| 12 |
Page SJ, Sisto SA, Levine P, et al. Modified constraint induced therapy: a randomized feasibility and efficacy study [J]. J Rehabil Res Dev, 2001, 38(5): 583-590.
|
| 13 |
Kwakkel G, Veerbeek JM, van Wegen EE, et al. Constraint-induced movement therapy after stroke [J]. Lancet Neurol, 2015, 14(2): 224-234.
|
| 14 |
Werme M, Messer C, Olson L, et al. Delta FosB regulates wheel running [J]. J Neurosci, 2002, 22(18): 8133-8138.
|
| 15 |
Nishijima T, Kawakami M, Kita I. Long-term exercise is a potent trigger for ΔFosB induction in the hippocampus along the dorso-ventral axis [J]. PLoS One, 2013, 8(11): e81245.
|
| 16 |
TAmakoshi K, Ishida A, Takamatsu Y, et al. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats [J]. Behav Brain Res, 2014, 260: 34-43.
|
| 17 |
Ip JP, Fu AK, Ip NY. CRMP2: functional roles in neural development and therapeutic potential in neurological diseases [J]. Neuroscientist, 2014, 20(6): 589-598.
|
| 18 |
胡志斌, 黄缨, 丁玉强. 脑缺血动物模型的制备及评估进展 [J]. 实验动物与比较医学, 2021, 41(4): 271-283.
|
| 19 |
Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour [J]. Nat Rev Neurosci, 2009, 10(12): 861-872.
|
| 20 |
Ishida A, Misumi S, Ueda Y, et al. Early constraint-induced movement therapy promotes functional recovery and neuronal plasticity in a subcortical hemorrhage model rat [J]. Behav Brain Res, 2015, 284: 158-166.
|
| 21 |
Li XB, Ding MX, Ding CL, et al. Toll Like receptor 4 promotes the phosphorylation of CRMP2 via the activation of Rho kinase in MCAO rats [J]. Mol Med Rep, 2018, 18(1): 342-348.
|
| 22 |
Yang X, Zhang X, Li Y, et al. Conventional protein kinase Cβ-mediated phosphorylation inhibits collapsin response-mediated protein 2 proteolysis and alleviates ischemic injury in cultured cortical neurons and ischemic stroke-induced mice [J]. J Neurochem, 2016, 137(3): 446-459.
|
| 23 |
Kondo S, Takahashi K, Kinoshita Y, et al. Genetic inhibition of CRMP2 phosphorylation at serine 522 promotes axonal regeneration after optic nerve injury [J]. Sci Rep, 2019, 9(1): 7188.
|
| 24 |
Nakamura F, Ohshima T, Goshima Y. Collapsin response mediator proteins: their biological functions and pathophysiology in neuronal development and regeneration [J]. Front Cell Neurosci, 2020, 14: 188.
|
| 25 |
Moutal A, White KA, Chefdeville A, et al. Dysregulation of CRMP2 post-translational modifications drive its pathological functions [J]. Mol Neurobiol, 2019, 56(10): 6736-6755.
|
| 26 |
邢进, 孙兆良, 冯东福. 中枢神经系统脑衰反应调节蛋白2的研究进展 [J]. 中华神经外科疾病研究杂志, 2016, 15(6): 564-566.
|
| 27 |
Brittain JM, Pan R, You H, et al. Disruption of NMDAR-CRMP-2 signaling protects against focal cerebral ischemic damage in the rat middle cerebral artery occlusion model [J]. Channels (Austin), 2012, 6(1): 52-59.
|
| 28 |
幸享凤, 王玉, 张融融, 等. CRMP2真核表达质粒在大鼠缺血/再灌注脑皮质转染效率的对比研究 [J]. 神经损伤与功能重建, 2020, 15(7): 373-376, 415.
|
| 29 |
幸享凤, 王恬竹, 秦新月. CRMP2可通过改善神经细胞凋亡减轻缺血/再灌注大鼠神经功能缺损 [J]. 中国药理学通报, 2016, 32(4): 548-553.
|
| 30 |
戚睿. 弥漫性轴索损伤后大鼠海马CRMP2和p-CRMP2 表达变化的实验研究 [D]. 蚌埠: 蚌埠医学院, 2015.
|
| 31 |
Sugeno A, Piao W, Yamazaki M, et al. Cortical transcriptome analysis after spinal cord injury reveals the regenerative mechanism of central nervous system in CRMP2 knock-in mice [J]. Neural Regen Res, 2021, 16(7): 1258-1265.
|
| 32 |
Abe H, Jitsuki S, Nakajima W, et al. CRMP2-binding compound, edonerpic maleate, accelerates motor function recovery from brain damage [J]. Science, 2018, 360(6384): 50-57.
|