| 1 |
Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier [J]. Nat Rev Neurosci, 2006, 7(1): 41-53.
|
| 2 |
Sweeney MD, Zhao Z, Montagne A, et al. Blood-brain barrier: from physiology to disease and back [J]. Physiol Rev, 2019, 99(1): 21-78.
|
| 3 |
Khan H, Pan JJ, Li Y, et al. Native and bioengineered exosomes for ischemic stroke therapy [J]. Front Cell Dev Biol, 2021, 9: 619565.
|
| 4 |
Vanlandewijck M, He L, Mäe MA, et al. A molecular atlas of cell types and zonation in the brain vasculature [J]. Nature, 2018, 554(7693): 475-480.
|
| 5 |
Engelhardt B, Liebner S. Novel insights into the development and maintenance of the blood-brain barrier [J]. Cell Tissue Res, 2014, 355(3): 687-699.
|
| 6 |
Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke [J]. Prog Neurobiol, 2016, 144: 103-120.
|
| 7 |
Van Niel G, Carter DRF, Clayton A, et al. Challenges and directions in studying cell-cell communication by extracellular vesicles [J]. Nat Rev Mol Cell Biol, 2022, 23(5): 369-382.
|
| 8 |
Xia X, Wang Y, Huang Y, et al. Exosomal miRNAs in central nervous system diseases: biomarkers, pathological mediators, protective factors and therapeutic agents [J]. Prog Neurobiol, 2019, 183: 101694.
|
| 9 |
Pan Q, He C, Liu H, et al. Microvascular endothelial cells-derived microvesicles imply in ischemic stroke by modulating astrocyte and blood brain barrier function and cerebral blood flow [J]. Mol Brain, 2016, 9(1): 63.
|
| 10 |
Fu J, Li L, Huo D, et al. Astrocyte-derived TGFβ1 facilitates blood-brain barrier function via non-canonical Hedgehog signaling in brain microvascular endothelial cells [J]. Brain Sci, 2021, 11(1): 77.
|
| 11 |
Fang J, Wang Z, Miao CY. Angiogenesis after ischemic stroke [J]. Acta Pharmacol Sin, 2023, 44(7): 1305-1321.
|
| 12 |
Söllvander S, Nikitidou E, Brolin R, et al. Accumulation of amyloid-β by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons [J]. Mol Neurodegener, 2016, 11(1): 38.
|
| 13 |
Holm MM, Kaiser J, Schwab ME. Extracellular vesicles: multimodal envoys in neural maintenance and repair [J]. Trends Neurosci, 2018, 41(6): 360-372.
|
| 14 |
Ogaki A, Ikegaya Y, Koyama R. Extracellular vesicles taken up by astrocytes [J]. Int J Mol Sci, 2021, 22(19): 10553.
|
| 15 |
D'Egidio F, Castelli V, D'Angelo M, et al. Brain incoming call from glia during neuroinflammation: roles of extracellular vesicles [J]. Neurobiol Dis, 2024, 201: 106663.
|
| 16 |
Upadhya R, Zingg W, Shetty S, et al. Astrocyte-derived extracellular vesicles: neuroreparative properties and role in the pathogenesis of neurodegenerative disorders [J]. J Control Release, 2020, 323: 225-239.
|
| 17 |
Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders [J]. Neuron, 2008, 57(2): 178-201.
|
| 18 |
Stamatovic SM, Johnson AM, Keep RF, et al. Junctional proteins of the blood-brain barrier: new insights into function and dysfunction [J]. Tissue Barriers, 2016, 4(1): e1154641.
|
| 19 |
Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders [J]. Nat Rev Neurol, 2018, 14(3): 133-150.
|
| 20 |
Shindo A, Maki T, Mandeville ET, et al. Astrocyte-derived Pentraxin 3 supports blood-brain barrier integrity under acute phase of stroke [J]. Stroke, 2016, 47(4): 1094-1100.
|
| 21 |
Kriaučiūnaitė K, Kaušylė A, Pajarskienė J, et al. Immortalised hippocampal astrocytes from 3xTG-AD mice fail to support BBB integrity in vitro: role of extracellular vesicles in glial-endothelial communication [J]. Cell Mol Neurobiol, 2021, 41(3): 551-562.
|
| 22 |
Guérit S, Fidan E, Macas J, et al. Astrocyte-derived Wnt growth factors are required for endothelial blood-brain barrier maintenance [J]. Prog Neurobiol, 2021, 199: 101937.
|
| 23 |
Rui Q, Ni H, Lin X, et al. Astrocyte-derived fatty acid-binding protein 7 protects blood-brain barrier integrity through a caveolin-1/MMP signaling pathway following traumatic brain injury [J]. Exp Neurol, 2019, 322: 113044.
|
| 24 |
Michinaga S, Inoue A, Sonoda K, et al. Down-regulation of astrocytic sonic hedgehog by activation of endothelin ET(B) receptors: Involvement in traumatic brain injury-induced disruption of blood brain barrier in a mouse model [J]. Neurochem Int, 2021, 146: 105042.
|
| 25 |
Hou Y, Xie Y, Liu X, et al. Oxygen glucose deprivation-pretreated astrocyte-derived exosomes attenuates intracerebral hemorrhage (ICH)-induced BBB disruption through miR-27a-3p /ARHGAP25/Wnt/β-catenin axis [J]. Fluids Barriers CNS, 2024, 21(1): 8.
|
| 26 |
Prat A, Biernacki K, Wosik K, et al. Glial cell influence on the human blood-brain barrier [J]. Glia, 2001, 36(2): 145-155.
|
| 27 |
Williamson MR, Fuertes CJA, Dunn AK, et al. Reactive astrocytes facilitate vascular repair and remodeling after stroke [J]. Cell Rep, 2021, 35(4): 109048.
|
| 28 |
Proia P, Schiera G, Mineo M, et al. Astrocytes shed extracellular vesicles that contain fibroblast growth factor-2 and vascular endothelial growth factor [J]. Int J Mol Med, 2008, 21(1): 63-67.
|
| 29 |
Woodbury ME, Ikezu T. Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration [J]. J Neuroimmune Pharmacol, 2014, 9(2): 92-101.
|
| 30 |
Shim JW, Madsen JR. VEGF signaling in neurological disorders [J]. Int J Mol Sci, 2018, 19(1): 275.
|
| 31 |
Greenberg DA, Jin K. From angiogenesis to neuropathology [J]. Nature, 2005, 438(7070): 959-954.
|
| 32 |
Byrd N, Grabel L. Hedgehog signaling in murine vasculogenesis and angiogenesis [J]. Trends Cardiovasc Med, 2004, 14(8): 308-313.
|
| 33 |
Cabezas R, Avila-Rodriguez M, Vega-Vela NE, et al. Growth factors and astrocytes metabolism: possible roles for platelet derived growth factor [J]. Med Chem, 2016, 12(3): 204-210.
|
| 34 |
Del Zoppo GJ, Mabuchi T. Cerebral microvessel responses to focal ischemia [J]. J Cereb Blood Flow Metab, 2003, 23(8): 879-894.
|
| 35 |
Kim JB, Lim CM, Yu YM, et al. Induction and subcellular localization of high-mobility group box-1 (HMGB1) in the postischemic rat brain [J]. J Neurosci Res, 2008, 86(5): 1125-1131.
|
| 36 |
Hayakawa K, Pham LD, Katusic ZS, et al. Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery [J]. Proc Natl Acad Sci U S A, 2012, 109(19): 7505-7510.
|
| 37 |
Treutiger CJ, Mullins GE, Johansson AS, et al. High mobility group 1 B-box mediates activation of human endothelium [J]. J Intern Med, 2003, 254(4): 375-385.
|
| 38 |
Guo Z, Zhang L, Wu Z, et al. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer's disease model [J]. Cell Stem Cell, 2014, 14(2): 188-202.
|
| 39 |
Barthels D, Das H. Current advances in ischemic stroke research and therapies [J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(4): 165260.
|
| 40 |
Tian W, Sawyer A, Kocaoglu FB, et al. Astrocyte-derived thrombospondin-2 is critical for the repair of the blood-brain barrier [J]. Am J Pathol, 2011, 179(2): 860-868.
|
| 41 |
Tang B, Song M, Xie X, et al. Tumor necrosis factor-stimulated gene-6 (TSG-6) secreted by BMSCs regulates activated astrocytes by inhibiting NF-κB signaling pathway to ameliorate blood brain barrier damage after intracerebral hemorrhage [J]. Neurochem Res, 2021, 46(9): 2387-2402.
|
| 42 |
Zagrean AM, Hermann DM, Opris I, et al. Multicellular crosstalk between exosomes and the neurovascular unit after cerebral ischemia. Therapeutic implications [J]. Front Neurosci, 2018, 12: 811.
|
| 43 |
Cekanaviciute E, Fathali N, Doyle KP, et al. Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice [J]. Glia, 2014, 62(8): 1227-1240.
|
| 44 |
Choi YC, Dalakas MC. Expression of matrix metalloproteinases in the muscle of patients with inflammatory myopathies [J]. Neurology, 2000, 54(1): 65-71.
|
| 45 |
Kalela A, Pönniö M, Koivu TA, et al. Association of serum sialic acid and MMP-9 with lipids and inflammatory markers [J]. Eur J Clin Invest, 2000, 30(2): 99-104.
|
| 46 |
Jiang Y, He R, Shi Y, et al. Plasma exosomes protect against cerebral ischemia/reperfusion injury via exosomal HSP70 mediated suppression of ROS [J]. Life Sci, 2020, 256: 117987.
|
| 47 |
Wang Y, Li H, Sun H, et al. A2 reactive astrocyte-derived exosomes alleviate cerebral ischemia-reperfusion injury by delivering miR-628 [J]. J Cell Mol Med, 2024, 28(16): e70004.
|
| 48 |
Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities [J]. Diabetes Care, 2008, 31 Suppl 2: S170-180.
|
| 49 |
Yang Y, Salayandia VM, Thompson JF, et al. Attenuation of acute stroke injury in rat brain by minocycline promotes blood-brain barrier remodeling and alternative microglia/macrophage activation during recovery [J]. J Neuroinflammation, 2015, 12: 26.
|
| 50 |
Shiroto T, Romero N, Sugiyama T, et al. Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium [J]. PLoS One, 2014, 9(2): e87871.
|
| 51 |
Zeng L, He X, Wang Y, et al. MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain [J]. Gene Ther, 2014, 21(1): 37-43.
|
| 52 |
Hall ED, Braughler JM. Central nervous system trauma and stroke. Ⅱ. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation [J]. Free Radic Biol Med, 1989, 6(3): 303-313.
|
| 53 |
Stewart R, Hope Hutson K, Nestorova GG. Therapeutic potential of astrocyte-derived extracellular vesicles in mitigating cytotoxicity and transcriptome changes in human brain endothelial cells [J]. Neuroscience, 2024, 560: 181-190.
|
| 54 |
Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges [J]. Acta Pharm Sin B, 2016, 6(4): 287-296.
|
| 55 |
Oyarce K, Cepeda MY, Lagos R, et al. Neuroprotective and neurotoxic effects of glial-derived exosomes [J]. Front Cell Neurosci, 2022, 16: 920686.
|
| 56 |
Gordillo-Sampedro S, Antounians L, Wei W, et al. iPSC-derived healthy human astrocytes selectively load miRNAs targeting neuronal genes into extracellular vesicles [J]. Mol Cell Neurosci, 2024, 129: 103933.
|