1 |
Barthels D, Das H. Current advances in ischemic stroke research and therapies [J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(4): 165260.
|
2 |
王拥军, 李子孝, 谷鸿秋, 等. 中国卒中报告2019(中文版)(3) [J]. 中国卒中杂志, 2020, 15(12): 1251-1263.
|
3 |
Zhang ZG, Chopp M. Exosomes in stroke pathogenesis and therapy [J]. J Clin Invest, 2016, 126(4): 1190-1197.
|
4 |
Skotland T, Hessvik NP, Sandvig K, et al. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology [J]. J Lipid Res, 2019, 60(1): 9-18.
|
5 |
Pegtel DM, Gould SJ. Exosomes [J]. Annu Rev Biochem, 2019, 88: 487-514.
|
6 |
Zhai X, Leo MD, Jaggar JH. Endothelin-1 stimulates vasoconstriction through Rab11A serine 177 phosphorylation [J]. Circ Res, 2017, 121(6): 650-661.
|
7 |
Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go [J]. Cell, 2016, 164(6): 1226-1232.
|
8 |
Saint-Pol J, Gosselet F, Duban-Deweer S, et al. Targeting and crossing the blood-brain barrier with extracellular vesicles [J]. Cells, 2020, 9(4): 851.
|
9 |
Wu X, Showiheen S, Sun AR, et al. Exosomes extraction and identification [J]. Methods Mol Biol, 2019, 2054: 81-91.
|
10 |
Chung IM, Rajakumar G, Venkidasamy B, et al. Exosomes: current use and future applications [J]. Clin Chim Acta, 2020, 500: 226-232.
|
11 |
Chen CC, Liu L, Ma F, et al. Elucidation of exosome migration across the blood-brain barrier model in vitro [J]. Cell Mol Bioeng, 2016, 9(4): 509-529.
|
12 |
Chen J, Chen S, Chen Y, et al. Circulating endothelial progenitor cells and cellular membrane microparticles in db/db diabetic mouse: possible implications in cerebral ischemic damage [J]. Am J Physiol Endocrinol Metab, 2011, 301(1): E62-E71.
|
13 |
Chen Y, Song Y, Huang J, et al. Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke [J]. Front Neurol, 2017, 8: 57.
|
14 |
李东斌, 王伟, 黎入莹, 等. 血浆外泌体源性miR-422a在缺血性脑卒中患者中的表达变化及其作为诊断标志物的探讨 [J]. 中华检验医学杂志, 2018, 41(9): 658-663.
|
15 |
Wang W, Li DB, Li RY, et al. Diagnosis of hyperacute and acute ischaemic stroke: the potential utility of exosomal microRNA-21-5p and microRNA-30a-5p [J]. Cerebrovasc Dis, 2018, 45(5-6): 204-212.
|
16 |
Hu H, Wang B, Jiang C, et al. Endothelial progenitor cell-derived exosomes facilitate vascular endothelial cell repair through shuttling miR-21-5p to modulate Thrombospondin-1 expression [J]. Clin Sci (Lond), 2019, 133(14): 1629-1644.
|
17 |
Manuel GE, Johnson T, Liu D. Therapeutic angiogenesis of exosomes for ischemic stroke [J]. Int J Physiol Pathophysiol Pharmacol, 2017, 9(6): 188-191.
|
18 |
Dai X, Zeng J, Yan X, et al. Sitagliptin-mediated preservation of endothelial progenitor cell function via augmenting autophagy enhances ischaemic angiogenesis in diabetes [J]. J Cell Mol Med, 2018, 22(1): 89-100.
|
19 |
Yamamoto S, Niida S, Azuma E, et al. Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes [J]. Sci Rep, 2015, 5: 8505.
|
20 |
Zhang H, Wu J, Wu J, et al. Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice [J]. J Nanobiotechnology, 2019, 17(1): 29.
|
21 |
Yang Y, Cai Y, Zhang Y, et al. Exosomes secreted by adipose-derived stem cells contribute to angiogenesis of brain microvascular endothelial cells following oxygen-glucose deprivation in vitro through microRNA-181b/TRPM7 axis [J]. J Mol Neurosci, 2018, 65(1): 74-83.
|
22 |
Li L, Wang P, Zhao H, et al. Noncoding RNAs and intracerebral hemorrhage [J]. CNS Neurol Disord Drug Targets, 2019, 18(3): 205-211.
|
23 |
Kikkawa Y, Ogura T, Nakajima H, et al. Altered expression of microRNA-15a and Kruppel-like factor 4 in cerebrospinal fluid and plasma after aneurysmal subarachnoid hemorrhage [J]. World Neurosurg, 2017, 108: 909-916.e3.
|
24 |
李武英, 金俊, 陈健, 等. 脑梗死和脑出血患者外周血中循环microRNA表达谱差异的初步分析 [J]. 实用医学杂志, 2014, 30(11): 1750-1753.
|
25 |
Otero-Ortega L, Gomez DFM, Laso-Garcia F, et al. Exosomes promote restoration after an experimental animal model of intracerebral hemorrhage [J]. J Cereb Blood Flow Metab, 2018, 38(5): 767-779.
|
26 |
Shen H, Yao X, Li H, et al. Role of exosomes derived from miR-133b modified MSCs in an experimental rat model of intracerebral hemorrhage [J]. J Mol Neurosci, 2018, 64(3): 421-430.
|
27 |
Kanazawa M, Ninomiya I, Hatakeyama M, et al. Microglia and monocytes/macrophages polarization reveal novel therapeutic mechanism against stroke [J]. Int J Mol Sci, 2017, 18(10): 2135.
|
28 |
Zheng Y, He R, Wang P, et al. Exosomes from LPS-stimulated macrophages induce neuroprotection and functional improvement after ischemic stroke by modulating microglial polarization [J]. Biomater Sci, 2019, 7(5): 2037-2049.
|
29 |
Song Y, Li Z, He T, et al. M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124 [J]. Theranostics, 2019, 9(10): 2910-2923.
|
30 |
Pei X, Li Y, Zhu L, et al. Astrocyte-derived exosomes suppress autophagy and ameliorate neuronal damage in experimental ischemic stroke [J]. Exp Cell Res, 2019, 382(2): 111474.
|
31 |
Jiang M, Wang H, Jin M, et al. Exosomes from miR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization [J]. Cell Physiol Biochem, 2018, 47(2): 864-878.
|
32 |
Geng W, Tang H, Luo S, et al. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation [J]. Am J Transl Res, 2019, 11(2): 780-792.
|
33 |
Zhang H, Wang Y, Lv Q, et al. MicroRNA-21 overexpression promotes the neuroprotective efficacy of mesenchymal stem cells for treatment of intracerebral hemorrhage [J]. Front Neurol, 2018, 9: 931.
|