切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (06) : 418 -421. doi: 10.11817/j.issn.1673-9248.2021.06.012

综述

外泌体及其携带的microRNA与脑卒中的研究进展
王孟杰1, 冯嵩2, 马文渊1, 陈超1, 靳峰1,()   
  1. 1. 272000 山东济宁,济宁医学院临床医学院
    2. 272000 山东济宁,济宁医学院附属医院神经外科
  • 收稿日期:2021-06-04 出版日期:2021-12-01
  • 通信作者: 靳峰
  • 基金资助:
    山东省医药卫生科技发展计划项目(2014WS0518); 济宁市科技重点研发计划(2018SMNS005); 济宁医学院教师科研扶持基金(JYFC2018FKJ100)

Research progress in exosomes, miRNA carried by exosome, and stroke

Mengjie Wang1, Song Feng2, Wenyuan Ma1, Chao Chen1, Feng Jin1,()   

  1. 1. Clinical College of Jining Medical University, Jining 272000, China
    2. Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining 272000, China
  • Received:2021-06-04 Published:2021-12-01
  • Corresponding author: Feng Jin
引用本文:

王孟杰, 冯嵩, 马文渊, 陈超, 靳峰. 外泌体及其携带的microRNA与脑卒中的研究进展[J]. 中华脑血管病杂志(电子版), 2021, 15(06): 418-421.

Mengjie Wang, Song Feng, Wenyuan Ma, Chao Chen, Feng Jin. Research progress in exosomes, miRNA carried by exosome, and stroke[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2021, 15(06): 418-421.

外泌体是一种可以由不同种类细胞分泌的特殊囊泡,能携带包括microRNA和蛋白质等生物分子在内的多种物质,参与细胞间的信号交流。脑卒中是一种复杂的脑血管疾病,特点是高致死率和高致残率。目前缺少更加特异的生物学标志物评估脑卒中造成的损伤程度和病情进展程度,同时治疗脑卒中的药物存在疗效不理想、副作用大等缺陷,而外泌体在脑卒中的发生和神经修复过程中发挥着作用,具有潜在的诊断、病情监测及治疗价值。本文就外泌体及其所携带的microRNA在缺血性脑卒中和出血性脑卒中的作用进行综述,以期为脑卒中的诊断、病情监测及治疗提供帮助。

Exosomes are special vesicles secreted by different kinds of cells, which can carry a variety of substances including microRNA (miRNA) and proteins, participating in intercellular signal communication. Stroke is a complex cerebrovascular disease, characterized by high mortality and high disability. Currently, there is a lack of specific biomarkers to assess the severity of damage and progression caused by stroke. At the same time, medicine treatment for stroke is not satisfying, with considerable side effects. Exosomes play an important role in stroke and afterwards neural repair, showing potential diagnostic, monitoring and therapeutic application . Here, we review the role of exosomes and exosome-derived miRNA in ischemic stroke and hemorrhagic stroke in order to enlighten the diagnosis, monitoring and treatment of stroke.

1
Barthels D, Das H. Current advances in ischemic stroke research and therapies [J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(4): 165260.
2
王拥军, 李子孝, 谷鸿秋, 等. 中国卒中报告2019(中文版)(3) [J]. 中国卒中杂志, 2020, 15(12): 1251-1263.
3
Zhang ZG, Chopp M. Exosomes in stroke pathogenesis and therapy [J]. J Clin Invest, 2016, 126(4): 1190-1197.
4
Skotland T, Hessvik NP, Sandvig K, et al. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology [J]. J Lipid Res, 2019, 60(1): 9-18.
5
Pegtel DM, Gould SJ. Exosomes [J]. Annu Rev Biochem, 2019, 88: 487-514.
6
Zhai X, Leo MD, Jaggar JH. Endothelin-1 stimulates vasoconstriction through Rab11A serine 177 phosphorylation [J]. Circ Res, 2017, 121(6): 650-661.
7
Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go [J]. Cell, 2016, 164(6): 1226-1232.
8
Saint-Pol J, Gosselet F, Duban-Deweer S, et al. Targeting and crossing the blood-brain barrier with extracellular vesicles [J]. Cells, 2020, 9(4): 851.
9
Wu X, Showiheen S, Sun AR, et al. Exosomes extraction and identification [J]. Methods Mol Biol, 2019, 2054: 81-91.
10
Chung IM, Rajakumar G, Venkidasamy B, et al. Exosomes: current use and future applications [J]. Clin Chim Acta, 2020, 500: 226-232.
11
Chen CC, Liu L, Ma F, et al. Elucidation of exosome migration across the blood-brain barrier model in vitro [J]. Cell Mol Bioeng, 2016, 9(4): 509-529.
12
Chen J, Chen S, Chen Y, et al. Circulating endothelial progenitor cells and cellular membrane microparticles in db/db diabetic mouse: possible implications in cerebral ischemic damage [J]. Am J Physiol Endocrinol Metab, 2011, 301(1): E62-E71.
13
Chen Y, Song Y, Huang J, et al. Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke [J]. Front Neurol, 2017, 8: 57.
14
李东斌, 王伟, 黎入莹, 等. 血浆外泌体源性miR-422a在缺血性脑卒中患者中的表达变化及其作为诊断标志物的探讨 [J]. 中华检验医学杂志, 2018, 41(9): 658-663.
15
Wang W, Li DB, Li RY, et al. Diagnosis of hyperacute and acute ischaemic stroke: the potential utility of exosomal microRNA-21-5p and microRNA-30a-5p [J]. Cerebrovasc Dis, 2018, 45(5-6): 204-212.
16
Hu H, Wang B, Jiang C, et al. Endothelial progenitor cell-derived exosomes facilitate vascular endothelial cell repair through shuttling miR-21-5p to modulate Thrombospondin-1 expression [J]. Clin Sci (Lond), 2019, 133(14): 1629-1644.
17
Manuel GE, Johnson T, Liu D. Therapeutic angiogenesis of exosomes for ischemic stroke [J]. Int J Physiol Pathophysiol Pharmacol, 2017, 9(6): 188-191.
18
Dai X, Zeng J, Yan X, et al. Sitagliptin-mediated preservation of endothelial progenitor cell function via augmenting autophagy enhances ischaemic angiogenesis in diabetes [J]. J Cell Mol Med, 2018, 22(1): 89-100.
19
Yamamoto S, Niida S, Azuma E, et al. Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes [J]. Sci Rep, 2015, 5: 8505.
20
Zhang H, Wu J, Wu J, et al. Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice [J]. J Nanobiotechnology, 2019, 17(1): 29.
21
Yang Y, Cai Y, Zhang Y, et al. Exosomes secreted by adipose-derived stem cells contribute to angiogenesis of brain microvascular endothelial cells following oxygen-glucose deprivation in vitro through microRNA-181b/TRPM7 axis [J]. J Mol Neurosci, 2018, 65(1): 74-83.
22
Li L, Wang P, Zhao H, et al. Noncoding RNAs and intracerebral hemorrhage [J]. CNS Neurol Disord Drug Targets, 2019, 18(3): 205-211.
23
Kikkawa Y, Ogura T, Nakajima H, et al. Altered expression of microRNA-15a and Kruppel-like factor 4 in cerebrospinal fluid and plasma after aneurysmal subarachnoid hemorrhage [J]. World Neurosurg, 2017, 108: 909-916.e3.
24
李武英, 金俊, 陈健, 等. 脑梗死和脑出血患者外周血中循环microRNA表达谱差异的初步分析 [J]. 实用医学杂志, 2014, 30(11): 1750-1753.
25
Otero-Ortega L, Gomez DFM, Laso-Garcia F, et al. Exosomes promote restoration after an experimental animal model of intracerebral hemorrhage [J]. J Cereb Blood Flow Metab, 2018, 38(5): 767-779.
26
Shen H, Yao X, Li H, et al. Role of exosomes derived from miR-133b modified MSCs in an experimental rat model of intracerebral hemorrhage [J]. J Mol Neurosci, 2018, 64(3): 421-430.
27
Kanazawa M, Ninomiya I, Hatakeyama M, et al. Microglia and monocytes/macrophages polarization reveal novel therapeutic mechanism against stroke [J]. Int J Mol Sci, 2017, 18(10): 2135.
28
Zheng Y, He R, Wang P, et al. Exosomes from LPS-stimulated macrophages induce neuroprotection and functional improvement after ischemic stroke by modulating microglial polarization [J]. Biomater Sci, 2019, 7(5): 2037-2049.
29
Song Y, Li Z, He T, et al. M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124 [J]. Theranostics, 2019, 9(10): 2910-2923.
30
Pei X, Li Y, Zhu L, et al. Astrocyte-derived exosomes suppress autophagy and ameliorate neuronal damage in experimental ischemic stroke [J]. Exp Cell Res, 2019, 382(2): 111474.
31
Jiang M, Wang H, Jin M, et al. Exosomes from miR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization [J]. Cell Physiol Biochem, 2018, 47(2): 864-878.
32
Geng W, Tang H, Luo S, et al. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation [J]. Am J Transl Res, 2019, 11(2): 780-792.
33
Zhang H, Wang Y, Lv Q, et al. MicroRNA-21 overexpression promotes the neuroprotective efficacy of mesenchymal stem cells for treatment of intracerebral hemorrhage [J]. Front Neurol, 2018, 9: 931.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[3] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[4] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[5] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[6] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[7] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[8] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[9] 廖家权, 吴波, 唐昌敏. 体外冲击波联合肌电生物反馈对脑卒中后足下垂的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 286-292.
[10] 孙畅, 赵世刚, 白文婷. 脑卒中后认知障碍与内分泌激素变化的关系[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 471-476.
[11] 张许平, 刘佳成, 张舸, 杜艳姣, 李韶, 商丹丹, 王浩, 李艳, 段智慧. CYP2C19基因多态性联合血栓弹力图指导大动脉粥样硬化型非致残性缺血性脑血管事件患者抗血小板治疗的效果[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 477-481.
[12] 杨海华, 袁景林, 周晓梅, 牛军伟. RNF213基因突变所致烟雾病一家系病例临床分析并文献复习[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 495-498.
[13] 李昕, 李永凯, 江树青, 夏来百提姑·赛买提, 杨建中. 急性缺血性脑卒中静脉溶栓后出血转化相关危险因素分析[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 331-336.
[14] 邓颖, 黄山, 胡慧秀, 孙超. 老年缺血性脑卒中患者危险因素聚集情况分析[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 344-349.
[15] 祁研, 张岩, 陈雪, 刘颖, 史楠. 探讨高低频交互rTMS对老年脑卒中偏瘫患者肢体功能、吞咽功能及日常生活活动能力的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 359-363.
阅读次数
全文


摘要