1 |
中华人民共和国国家卫生健康委员会. 国家卫生健康委办公厅关于印发中国脑卒中防治指导规范(2021年版)的通知 [S/OL]. [2021-08-27].
URL
|
2 |
Hankey GJ. Stroke [J]. Lancet, 2017, 389(10069): 641-654.
|
3 |
Nussinov R, Tsai CJ, Xin F, et al. Allosteric post-translational modification codes [J]. Trends Biochem Sci, 2012, 37(10): 447-455.
|
4 |
Fischer EH, Graves DJ, Crittenden ER, et al. Structure of the site phosphorylated in the phosphorylase b to a reaction [J]. J Biol Chem, 1959, 234(7): 1698-1704.
|
5 |
Takagi N. Protein tyrosine phosphorylation in the ischemic brain [J]. J Pharmacol Sci, 2014, 125(4): 333-339.
|
6 |
Zhou J, Du T, Li B, et al. Crosstalk between MAPK/ERK and PI3K/AKT signal pathways during brain ischemia/reperfusion [J]. ASN Neuro, 2015, 7(5): 1759091415602463.
|
7 |
Takenaga Y, Takagi N, Murotomi K, et al. Inhibition of Src activity decreases tyrosine phosphorylation of occludin in brain capillaries and attenuates increase in permeability of the blood-brain barrier after transient focal cerebral ischemia [J]. J Cereb Blood Flow Metab, 2009, 29(6): 1099-1108.
|
8 |
Gurnik S, Devraj K, Macas J, et al. Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling [J]. Acta Neuropathol, 2016, 131(5): 753-773.
|
9 |
Sun Y, Cheng X, Hu J, et al. The role of GluN2A in cerebral ischemia: promoting neuron death and survival in the early stage and thereafter [J]. Mol Neurobiol, 2018, 55(2): 1208-1216.
|
10 |
Zhong Y, Yin B, Ye Y, et al. The bidirectional role of the JAK2/STAT3 signaling pathway and related mechanisms in cerebral ischemia-reperfusion injury [J]. Exp Neurol, 2021, 341: 113690.
|
11 |
Jiang S, Li T, Ji T, et al. AMPK: potential therapeutic target for ischemic stroke [J]. Theranostics, 2018, 8(16): 4535-4551.
|
12 |
Liu H, Wu X, Luo J, et al. Pterostilbene attenuates astrocytic inflammation and neuronal oxidative injury after ischemia-reperfusion by inhibiting NF-kappaB phosphorylation [J]. Front Immunol, 2019, 10: 2408.
|
13 |
Forder JP, Tymianski M. Postsynaptic mechanisms of excitotoxicity: Involvement of postsynaptic density proteins, radicals, and oxidant molecules [J]. Neuroscience, 2009, 158(1): 293-300.
|
14 |
Schmidt MF, Gan ZY, Komander D, et al. Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities [J]. Cell Death Differ, 2021, 28(2): 570-590.
|
15 |
Hochrainer K. Protein Modifications with ubiquitin as response to cerebral ischemia-reperfusion injury [J]. Transl Stroke Res, 2018, 9(2): 157-173.
|
16 |
Iwabuchi M, Sheng H, Thompson JW, et al. Characterization of the ubiquitin-modified proteome regulated by transient forebrain ischemia [J]. J Cereb Blood Flow Metab, 2014, 34(3): 425-432.
|
17 |
Hayashi T, Takada K, Matsuda M. Post-transient ischemia increase in ubiquitin conjugates in the early reperfusion [J]. Neuroreport, 1992, 3(6): 519-520.
|
18 |
Hochrainer K, Jackman K, Anrather J, et al. Reperfusion rather than ischemia drives the formation of ubiquitin aggregates after middle cerebral artery occlusion [J]. Stroke, 2012, 43(8): 2229-2235.
|
19 |
Chen C, Qin H, Tang J, et al. USP30 protects against oxygen-glucose deprivation/reperfusion induced mitochondrial fragmentation and ubiquitination and degradation of MFN2 [J]. Aging (Albany NY), 2021, 13(4): 6194-6204.
|
20 |
Yang JL, Mukda S, Chen SD. Diverse roles of mitochondria in ischemic stroke [J]. Redox Biol, 2018, 16: 263-275.
|
21 |
Li T, Qin JJ, Yang X, et al. The ubiquitin E3 ligase TRAF6 exacerbates ischemic stroke by ubiquitinating and activating Rac1 [J]. J Neurosci, 2017, 37(50): 12123-12140.
|
22 |
Meng S, Su Z, Liu Z, et al. Rac1 contributes to cerebral ischemia reperfusion-induced injury in mice by regulation of Notch2 [J]. Neuroscience, 2015, 306: 100-114.
|
23 |
Matrone C, Pignataro G, Molinaro P, et al. HIF-1alpha reveals a binding activity to the promoter of iNOS gene after permanent middle cerebral artery occlusion [J]. J Neurochem, 2004, 90(2): 368-378.
|
24 |
Greijer AE, van der Groep P, Kemming D, et al. Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1) [J]. J Pathol, 2005, 206(3): 291-304.
|
25 |
Greijer AE, van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis [J]. J Clin Pathol, 2004, 57(10): 1009-1114.
|
26 |
Villeneuve NF, Lau A, Zhang DD. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases [J]. Antioxid Redox Signal, 2010, 13(11): 1699-1712.
|
27 |
Jiang S, Deng C, Lv J, et al. Nrf2 Weaves an Elaborate Network of Neuroprotection Against Stroke [J]. Mol Neurobiol, 2017, 54(2): 1440-1455.
|
28 |
Yuan J, Amin P, Ofengeim D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases [J]. Nat Rev Neurosci, 2019, 20(1): 19-33.
|
29 |
Wang Y, Shan B, Liang Y, et al. Parkin regulates NF-kappaB by mediating site-specific ubiquitination of RIPK1 [J]. Cell Death Dis, 2018, 9(7): 732.
|
30 |
Phillips DM. The presence of acetyl groups of histones [J]. Biochem J, 1963, 87: 258-263.
|
31 |
Klimova N, Long A, Kristian T. Significance of mitochondrial protein post-translational modifications in pathophysiology of brain injury [J]. Transl Stroke Res, 2018, 9(3): 223-237.
|
32 |
Kim SC, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey [J]. Mol Cell, 2006, 23(4): 607-618.
|
33 |
Shi L, Tu BP. Protein acetylation as a means to regulate protein function in tune with metabolic state [J]. Biochem Soc Trans, 2014, 42(4): 1037-1042.
|
34 |
Demyanenko S, Uzdensky A. Epigenetic alterations induced by photothrombotic stroke in the rat cerebral cortex: deacetylation of histone H3, upregulation of histone deacetylases and histone acetyltransferases [J]. Int J Mol Sci, 2019, 20(12): 2882.
|
35 |
Uzdensky AB, Demyanenko S. Histone acetylation and deacetylation in ischemic stroke [J]. Neural Regen Res, 2021, 16(8): 1529-1530.
|
36 |
Narita T, Weinert BT, Choudhary C. Functions and mechanisms of non-histone protein acetylation [J]. Nat Rev Mol Cell Biol, 2019, 20(3): 156-174.
|
37 |
Spange S, Wagner T, Heinzel T, et al. Acetylation of non-histone proteins modulates cellular signalling at multiple levels [J]. Int J Biochem Cell Biol, 2009, 41(1): 185-198.
|
38 |
Downey M. Non-histone protein acetylation by the evolutionarily conserved GCN5 and PCAF acetyltransferases [J]. Biochim Biophys Acta Gene Regul Mech, 2021, 1864(2): 194608.
|
39 |
Sikder S, Kaypee S, Kundu TK. Regulation of epigenetic state by non-histone chromatin proteins and transcription factors: implications in disease [J]. J Biosci, 2020, 45: 15.
|
40 |
Demyanenko S, Sharifulina S. The role of post-translational acetylation and deacetylation of signaling proteins and transcription factors after cerebral ischemia: facts and hypotheses [J]. Int J Mol Sci, 2021, 22(15): 7947.
|
41 |
Hong LZ, Zhao XY, Zhang HL. p53-mediated neuronal cell death in ischemic brain injury [J]. Neurosci Bull, 2010, 26(3): 232-240.
|
42 |
Li M, Li SC, Dou BK, et al. Cycloastragenol upregulates SIRT1 expression, attenuates apoptosis and suppresses neuroinflammation after brain ischemia [J]. Acta Pharmacol Sin, 2020, 41(8): 1025-1032.
|
43 |
Wang JK, Guo Q, Zhang XW, et al. Aglaia odorata Lour. extract inhibit ischemic neuronal injury potentially via suppressing p53/Puma-mediated mitochondrial apoptosis pathway [J]. J Ethnopharmacol, 2020, 248: 112336.
|
44 |
Tang Y, Zhao W, Chen Y, et al. Acetylation is indispensable for p53 activation [J]. Cell, 2008, 133(4): 612-626.
|
45 |
Xie YL, Zhang B, Jing L. MiR-125b blocks Bax/Cytochrome C/Caspase-3 apoptotic signaling pathway in rat models of cerebral ischemia-reperfusion injury by targeting p53 [J]. Neurol Res, 2018, 40(10): 828-837.
|
46 |
Liu Y, Fu N, Su J, et al. Rapid enkephalin delivery using exosomes to promote neurons recovery in ischemic stroke by inhibiting neuronal p53/caspase-3 [J]. Biomed Res Int, 2019, 2019: 4273290.
|
47 |
Liao Y, Cheng J, Kong X, et al. HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway [J]. Theranostics, 2020, 10(21): 9644-9662.
|
48 |
Klimova N, Fearnow A, Long A, et al. NAD(+) precursor modulates post-ischemic mitochondrial fragmentation and reactive oxygen species generation via SIRT3 dependent mechanisms [J]. Exp Neurol, 2020, 325: 113144.
|
49 |
Liu X, Zhang L, Wang P, et al. Sirt3-dependent deacetylation of SOD2 plays a protective role against oxidative stress in oocytes from diabetic mice [J]. Cell Cycle, 2017, 16(13): 1302-1308.
|
50 |
Song L, Luo ZQ. Post-translational regulation of ubiquitin signaling [J]. J Cell Biol, 2019, 218(6): 1776-1786.
|
51 |
Habibian J, Ferguson BS. The crosstalk between acetylation and phosphorylation: emerging new roles for HDAC inhibitors in the heart [J]. Int J Mol Sci, 2018, 20(1): 102.
|
52 |
Wang Z, Leng Y, Tsai LK, et al. Valproic acid attenuates blood-brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition [J]. J Cereb Blood Flow Metab, 2011, 31(1): 52-57.
|