切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (02) : 125 -129. doi: 10.11817/j.issn.1673-9248.2022.02.012

综述

蛋白质翻译后修饰在脑缺血再灌注中的作用
洪泽璇1, 陶涛2, 秦再生1,()   
  1. 1. 510515 广州,南方医科大学南方医院麻醉科
    2. 524045 广东湛江,湛江中心人民医院麻醉科
  • 收稿日期:2022-01-17 出版日期:2022-04-01
  • 通信作者: 秦再生
  • 基金资助:
    国家自然科学基金项目(81973305)

Post-translational modifications in cerebral ischemia-reperfusion

Zexuan Hong1, Tao Tao2, Zaisheng Qin1,()   

  1. 1. Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
    2. Department of Anesthesiology, Central People’s Hospital of Zhanjiang, Zhanjiang 524045, China
  • Received:2022-01-17 Published:2022-04-01
  • Corresponding author: Zaisheng Qin
引用本文:

洪泽璇, 陶涛, 秦再生. 蛋白质翻译后修饰在脑缺血再灌注中的作用[J]. 中华脑血管病杂志(电子版), 2022, 16(02): 125-129.

Zexuan Hong, Tao Tao, Zaisheng Qin. Post-translational modifications in cerebral ischemia-reperfusion[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2022, 16(02): 125-129.

蛋白质翻译后修饰是指蛋白质在翻译中或翻译后经历的共价加工的过程,能改变蛋白的结构及功能,对发挥细胞功能及维持机体稳态至关重要。在脑缺血再灌注损伤中,蛋白质翻译后修饰对物质代谢、氧化应激、凋亡、轴突生长等过程有重要的调节作用。本文对脑缺血再灌注损伤中3种常见的蛋白质翻译后修饰类型——磷酸化、泛素化及乙酰化进行总结,重点阐述其在疾病发展中的作用及修饰之间的相互作用,旨在为缺血性脑卒中寻找有效治疗靶点提供思路。

Post-translational modifications of proteins refer to the covalent processing in translation or post-translation, which can alter the structure and function of the proteins. Post-translational modifications are essential to maintain cellular function and cellular environmental homeostasis. In cerebral ischemia-reperfusion, post-translation modifications regulate many processes, including metabolism, oxidative stress, apoptosis and axon growth. This review mainly focuses on three common types of post-translational modifications: phosphorylation, ubiquitylation and acetylation. We summarize the impacts of these modifications during the cerebral ischemia-reperfusion injury and crosstalk among these modifications which may give us hints about the effective targets for ischemic stroke.

表1 常见的翻译后修饰蛋白及其机制
1
中华人民共和国国家卫生健康委员会. 国家卫生健康委办公厅关于印发中国脑卒中防治指导规范(2021年版)的通知 [S/OL]. [2021-08-27].

URL    
2
Hankey GJ. Stroke [J]. Lancet, 2017, 389(10069): 641-654.
3
Nussinov R, Tsai CJ, Xin F, et al. Allosteric post-translational modification codes [J]. Trends Biochem Sci, 2012, 37(10): 447-455.
4
Fischer EH, Graves DJ, Crittenden ER, et al. Structure of the site phosphorylated in the phosphorylase b to a reaction [J]. J Biol Chem, 1959, 234(7): 1698-1704.
5
Takagi N. Protein tyrosine phosphorylation in the ischemic brain [J]. J Pharmacol Sci, 2014, 125(4): 333-339.
6
Zhou J, Du T, Li B, et al. Crosstalk between MAPK/ERK and PI3K/AKT signal pathways during brain ischemia/reperfusion [J]. ASN Neuro, 2015, 7(5): 1759091415602463.
7
Takenaga Y, Takagi N, Murotomi K, et al. Inhibition of Src activity decreases tyrosine phosphorylation of occludin in brain capillaries and attenuates increase in permeability of the blood-brain barrier after transient focal cerebral ischemia [J]. J Cereb Blood Flow Metab, 2009, 29(6): 1099-1108.
8
Gurnik S, Devraj K, Macas J, et al. Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling [J]. Acta Neuropathol, 2016, 131(5): 753-773.
9
Sun Y, Cheng X, Hu J, et al. The role of GluN2A in cerebral ischemia: promoting neuron death and survival in the early stage and thereafter [J]. Mol Neurobiol, 2018, 55(2): 1208-1216.
10
Zhong Y, Yin B, Ye Y, et al. The bidirectional role of the JAK2/STAT3 signaling pathway and related mechanisms in cerebral ischemia-reperfusion injury [J]. Exp Neurol, 2021, 341: 113690.
11
Jiang S, Li T, Ji T, et al. AMPK: potential therapeutic target for ischemic stroke [J]. Theranostics, 2018, 8(16): 4535-4551.
12
Liu H, Wu X, Luo J, et al. Pterostilbene attenuates astrocytic inflammation and neuronal oxidative injury after ischemia-reperfusion by inhibiting NF-kappaB phosphorylation [J]. Front Immunol, 2019, 10: 2408.
13
Forder JP, Tymianski M. Postsynaptic mechanisms of excitotoxicity: Involvement of postsynaptic density proteins, radicals, and oxidant molecules [J]. Neuroscience, 2009, 158(1): 293-300.
14
Schmidt MF, Gan ZY, Komander D, et al. Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities [J]. Cell Death Differ, 2021, 28(2): 570-590.
15
Hochrainer K. Protein Modifications with ubiquitin as response to cerebral ischemia-reperfusion injury [J]. Transl Stroke Res, 2018, 9(2): 157-173.
16
Iwabuchi M, Sheng H, Thompson JW, et al. Characterization of the ubiquitin-modified proteome regulated by transient forebrain ischemia [J]. J Cereb Blood Flow Metab, 2014, 34(3): 425-432.
17
Hayashi T, Takada K, Matsuda M. Post-transient ischemia increase in ubiquitin conjugates in the early reperfusion [J]. Neuroreport, 1992, 3(6): 519-520.
18
Hochrainer K, Jackman K, Anrather J, et al. Reperfusion rather than ischemia drives the formation of ubiquitin aggregates after middle cerebral artery occlusion [J]. Stroke, 2012, 43(8): 2229-2235.
19
Chen C, Qin H, Tang J, et al. USP30 protects against oxygen-glucose deprivation/reperfusion induced mitochondrial fragmentation and ubiquitination and degradation of MFN2 [J]. Aging (Albany NY), 2021, 13(4): 6194-6204.
20
Yang JL, Mukda S, Chen SD. Diverse roles of mitochondria in ischemic stroke [J]. Redox Biol, 2018, 16: 263-275.
21
Li T, Qin JJ, Yang X, et al. The ubiquitin E3 ligase TRAF6 exacerbates ischemic stroke by ubiquitinating and activating Rac1 [J]. J Neurosci, 2017, 37(50): 12123-12140.
22
Meng S, Su Z, Liu Z, et al. Rac1 contributes to cerebral ischemia reperfusion-induced injury in mice by regulation of Notch2 [J]. Neuroscience, 2015, 306: 100-114.
23
Matrone C, Pignataro G, Molinaro P, et al. HIF-1alpha reveals a binding activity to the promoter of iNOS gene after permanent middle cerebral artery occlusion [J]. J Neurochem, 2004, 90(2): 368-378.
24
Greijer AE, van der Groep P, Kemming D, et al. Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1) [J]. J Pathol, 2005, 206(3): 291-304.
25
Greijer AE, van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis [J]. J Clin Pathol, 2004, 57(10): 1009-1114.
26
Villeneuve NF, Lau A, Zhang DD. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases [J]. Antioxid Redox Signal, 2010, 13(11): 1699-1712.
27
Jiang S, Deng C, Lv J, et al. Nrf2 Weaves an Elaborate Network of Neuroprotection Against Stroke [J]. Mol Neurobiol, 2017, 54(2): 1440-1455.
28
Yuan J, Amin P, Ofengeim D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases [J]. Nat Rev Neurosci, 2019, 20(1): 19-33.
29
Wang Y, Shan B, Liang Y, et al. Parkin regulates NF-kappaB by mediating site-specific ubiquitination of RIPK1 [J]. Cell Death Dis, 2018, 9(7): 732.
30
Phillips DM. The presence of acetyl groups of histones [J]. Biochem J, 1963, 87: 258-263.
31
Klimova N, Long A, Kristian T. Significance of mitochondrial protein post-translational modifications in pathophysiology of brain injury [J]. Transl Stroke Res, 2018, 9(3): 223-237.
32
Kim SC, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey [J]. Mol Cell, 2006, 23(4): 607-618.
33
Shi L, Tu BP. Protein acetylation as a means to regulate protein function in tune with metabolic state [J]. Biochem Soc Trans, 2014, 42(4): 1037-1042.
34
Demyanenko S, Uzdensky A. Epigenetic alterations induced by photothrombotic stroke in the rat cerebral cortex: deacetylation of histone H3, upregulation of histone deacetylases and histone acetyltransferases [J]. Int J Mol Sci, 2019, 20(12): 2882.
35
Uzdensky AB, Demyanenko S. Histone acetylation and deacetylation in ischemic stroke [J]. Neural Regen Res, 2021, 16(8): 1529-1530.
36
Narita T, Weinert BT, Choudhary C. Functions and mechanisms of non-histone protein acetylation [J]. Nat Rev Mol Cell Biol, 2019, 20(3): 156-174.
37
Spange S, Wagner T, Heinzel T, et al. Acetylation of non-histone proteins modulates cellular signalling at multiple levels [J]. Int J Biochem Cell Biol, 2009, 41(1): 185-198.
38
Downey M. Non-histone protein acetylation by the evolutionarily conserved GCN5 and PCAF acetyltransferases [J]. Biochim Biophys Acta Gene Regul Mech, 2021, 1864(2): 194608.
39
Sikder S, Kaypee S, Kundu TK. Regulation of epigenetic state by non-histone chromatin proteins and transcription factors: implications in disease [J]. J Biosci, 2020, 45: 15.
40
Demyanenko S, Sharifulina S. The role of post-translational acetylation and deacetylation of signaling proteins and transcription factors after cerebral ischemia: facts and hypotheses [J]. Int J Mol Sci, 2021, 22(15): 7947.
41
Hong LZ, Zhao XY, Zhang HL. p53-mediated neuronal cell death in ischemic brain injury [J]. Neurosci Bull, 2010, 26(3): 232-240.
42
Li M, Li SC, Dou BK, et al. Cycloastragenol upregulates SIRT1 expression, attenuates apoptosis and suppresses neuroinflammation after brain ischemia [J]. Acta Pharmacol Sin, 2020, 41(8): 1025-1032.
43
Wang JK, Guo Q, Zhang XW, et al. Aglaia odorata Lour. extract inhibit ischemic neuronal injury potentially via suppressing p53/Puma-mediated mitochondrial apoptosis pathway [J]. J Ethnopharmacol, 2020, 248: 112336.
44
Tang Y, Zhao W, Chen Y, et al. Acetylation is indispensable for p53 activation [J]. Cell, 2008, 133(4): 612-626.
45
Xie YL, Zhang B, Jing L. MiR-125b blocks Bax/Cytochrome C/Caspase-3 apoptotic signaling pathway in rat models of cerebral ischemia-reperfusion injury by targeting p53 [J]. Neurol Res, 2018, 40(10): 828-837.
46
Liu Y, Fu N, Su J, et al. Rapid enkephalin delivery using exosomes to promote neurons recovery in ischemic stroke by inhibiting neuronal p53/caspase-3 [J]. Biomed Res Int, 2019, 2019: 4273290.
47
Liao Y, Cheng J, Kong X, et al. HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway [J]. Theranostics, 2020, 10(21): 9644-9662.
48
Klimova N, Fearnow A, Long A, et al. NAD(+) precursor modulates post-ischemic mitochondrial fragmentation and reactive oxygen species generation via SIRT3 dependent mechanisms [J]. Exp Neurol, 2020, 325: 113144.
49
Liu X, Zhang L, Wang P, et al. Sirt3-dependent deacetylation of SOD2 plays a protective role against oxidative stress in oocytes from diabetic mice [J]. Cell Cycle, 2017, 16(13): 1302-1308.
50
Song L, Luo ZQ. Post-translational regulation of ubiquitin signaling [J]. J Cell Biol, 2019, 218(6): 1776-1786.
51
Habibian J, Ferguson BS. The crosstalk between acetylation and phosphorylation: emerging new roles for HDAC inhibitors in the heart [J]. Int J Mol Sci, 2018, 20(1): 102.
52
Wang Z, Leng Y, Tsai LK, et al. Valproic acid attenuates blood-brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition [J]. J Cereb Blood Flow Metab, 2011, 31(1): 52-57.
[1] 邢小炜, 钱琦, 金平. 肝X受体β在电针治疗慢性脑缺血炎性损伤中的作用研究[J]. 中华危重症医学杂志(电子版), 2022, 15(02): 122-126.
[2] 刘锐, 王树明. 丙戊酸钠抗休克作用及其相关机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(04): 359-362.
[3] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[4] 黄杰, 夏瑜, 姜艳娇, 刘云. GPR146经P-JNK通路对肺动脉高压小鼠血管重塑的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 460-465.
[5] 陈俊杰, 郭浩然, 施波, 陈国梁, 邰清亮, 侍新宇, 姚慧慧, 米秀伟, 王索, 孙金兵, 周迪远, 顾闻, 何宋兵. 基于TCGA和GEO数据挖掘分析NAT1在结肠癌中的表达及预后意义[J]. 中华结直肠疾病电子杂志, 2022, 11(05): 399-408.
[6] 何彬, 王静. 彩色多普勒超声血流参数、血清尿酸、胱抑素C对短暂性脑缺血发作患者颈动脉狭窄的诊断价值[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 289-294.
[7] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[8] 王静, 何彬. 经颅彩色多普勒超声联合血sCD40L、Fib、PAF对短暂性脑缺血发作后脑梗死的预测效果[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 222-227.
[9] 白壮壮, 李东波, 杨倩. 慢性创伤性脑病诊断相关标志物的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 302-306.
[10] 杨梦琦, 马慧芬, 訾阳, 王楠, 杜冰玉, 常万鹏, 于少泓. 马黛茶对脑血管疾病防治作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 235-240.
[11] 郑薏, 彭雯雯, 钟月丽. MicroRNA-34a调控电针对缺血再灌注损伤大鼠反应性星形胶质细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 135-141.
[12] 黄晴, 赵瑞珩, 钱惠英. PCI-24781诱导SKOV-3细胞凋亡及相关机制的研究[J]. 中华临床医师杂志(电子版), 2022, 16(08): 775-781.
[13] 季鹏, 郭言言, 王超. CT灌注成像联合CT血管造影对TIA患者进展为急性脑梗死的预测[J]. 中华介入放射学电子杂志, 2023, 11(02): 128-132.
[14] 江哲宇, 蒋天鹏, 周石, 王黎洲. 微小RNA在脑缺血再灌注损伤中的研究现状与进展[J]. 中华介入放射学电子杂志, 2022, 10(01): 75-82.
[15] 朱旭, 郭翠霞, 魏洁, 张宁, 王喜旺, 于国渊. 脑灌注压联合血小板体积指数对颅内动脉瘤栓塞术后迟发性脑缺血的预测价值[J]. 中华脑血管病杂志(电子版), 2022, 16(06): 392-397.
阅读次数
全文


摘要