切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (03) : 290 -293. doi: 10.11817/j.issn.1673-9248.2023.03.017

综述

阿尔茨海默病及相关认知障碍疾病与早老素2基因相关性的研究进展
夏禹, 刘寒, 朱瑞()   
  1. 230041 合肥,安徽医科大学合肥第三临床学院 合肥市第三人民医院神经内科
    230041 合肥,安徽省公共卫生临床中心 安徽医科大学第一附属医院神经内科
  • 收稿日期:2022-12-21 出版日期:2023-06-01
  • 通信作者: 朱瑞
  • 基金资助:
    安徽医科大学校基金项目(2021xkj064); 合肥市第三人民医院院级科研项目(SYKZ202301)

Research progress on the relationship between Alzheimer's disease and related cognitive disorders and presenilin 2 gene

Yu Xia, Han Liu, Rui Zhu()   

  1. Department of Neurology, the Third People's Hospital of Hefei, the Third Clinical College of Anhui Medical University, Hefei 230041, China
    Department of Neurology, First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei 230041, China
  • Received:2022-12-21 Published:2023-06-01
  • Corresponding author: Rui Zhu
引用本文:

夏禹, 刘寒, 朱瑞. 阿尔茨海默病及相关认知障碍疾病与早老素2基因相关性的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 290-293.

Yu Xia, Han Liu, Rui Zhu. Research progress on the relationship between Alzheimer's disease and related cognitive disorders and presenilin 2 gene[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2023, 17(03): 290-293.

阿尔茨海默病(AD)及相关认知障碍疾病,如额颞叶痴呆、路易体痴呆、帕金森病性痴呆、大脑后部皮质萎缩(PCA),皆属于神经系统退行性病变,具有不可逆性,是引起中老年患者发生认知障碍的重要原因,尤其是导致早期认知功能减退。早老素2(PS2)基因与此类疾病的发生、发展密切相关,且其发生基因突变的概率较为罕见,容易被患者和临床医师忽视。因此本文通过阐述AD及相关认知障碍疾病定义及其与PS2基因的相关性研究进展,以增进临床医师和公众对此类疾病的认识和理解,及时做好早期预防和干预。

Alzheimer's disease (AD) and related cognitive disorders, such as frontotemporal lobe dementia, Lewy body dementia, Parkinson's disease dementia, and posterior cerebral cortex atrophy, belong to neurodegenerative changes which are irreversible. They are global problems that cause cognitive impairment in young and elderly patients, especially early cognitive impairment. The presenilin 2 (PS2) gene is closely related to the occurrence and development of such diseases, and its probability of gene mutation is relatively rare, which is easy to be ignored by patients and clinicians. Therefore, this article describes the definition of AD and related cognitive disorders and the progress of research on the relationship between AD and PS2 gene, to improve the awareness and understanding of clinicians and the public on such diseases, and do early prevention and intervention in time.

1
Bekris LM, Yu CE, Bird TD, et al. Genetics of Alzheimer disease [J]. J Geriatr Psychiatry Neurol, 2010, 23(4): 213-227.
2
Chan D, Suk HJ, Jackson BL, et al. Gamma frequency sensory stimulation in mild probable Alzheimer's dementia patients: Results of feasibility and pilot studies [J]. PLoS One, 2022, 17(12): e0278412.
3
Mintun MA, Lo AC, Duggan Evans C, et al. Donanemab in early Alzheimer's disease [J]. N Engl J Med, 2021, 384(18): 1691-1704.
4
Swanson CJ, Zhang Y, Dhadda S, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer's disease with lecanemab, an anti-Aβ protofibril antibody [J]. J Alzheimers Dis, 2021, 13(1): 80.
5
Munoz-Bermejo L, Gonzalez-Becerra MJ, Barrios-Fernandez S, et al. Cost-effectiveness of the comprehensive interdisciplinary program-care in informal caregivers of people with Alzheimer's disease [J]. Int J Environ Res Public Health, 2022, 19(22): 15243.
6
Diehl J, Ernst J, Krapp S, et al. Misdemeanor in frontotemporal dementia [J]. Fortschr Neurol Psychiatr, 2006, 74(4): 203-210.
7
Hughes LE, Rittman T, Regenthal R, et al. Improving response inhibition systems in frontotemporal dementia with citalopram [J]. Brain, 2015, 138(Pt 7): 1961-1975.
8
Phan K, He Y, Pickford R, et al. Uncovering pathophysiological changes in frontotemporal dementia using serum lipids [J]. Sci Rep, 2020, 10(1): 3640.
9
Staffaroni AM, Ljubenkov PA, Kornak J, et al. Longitudinal multimodal imaging and clinical endpoints for frontotemporal dementia clinical trials [J]. Brain, 2019, 142(2): 443-459.
10
O'Connor CM, Clemson L, Brodaty H, et al. The tailored activity program (TAP) to address behavioral disturbances in frontotemporal dementia: a feasibility and pilot study [J]. Disabil Rehabil Assist Technol, 2019, 41(3): 299-310.
11
Silva MC, Ferguson FM, Cai Q, et al. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models [J]. Elife, 2019, 8: e45457.
12
Lester E, Ooi FK, Bakkar N, et al. Tau aggregates are RNA-protein assemblies that mislocalize multiple nuclear speckle components [J]. Neuron, 2021, 109(10): 1675-1691, e1679.
13
Benson DF, Davis RJ, Snyder BD. Posterior cortical atrophy[J].Arch Neurol, 1988,45(7):789-93.
14
Fedeli C, Filadi R, Rossi A, et al. PSEN2 (presenilin 2) mutants linked to familial Alzheimer disease impair autophagy by altering Ca2+ homeostasis [J]. Autophagy, 2019, 15(12): 2044-2062.
15
Arber C, Lovejoy C, Harris L, et al. Familial Alzheimer's disease mutations in PSEN1 lead to premature human stem cell neurogenesis [J]. Cell Rep, 2021, 34(2): 108615.
16
Stanga S, Vrancx C, Tasiaux B, et al. Specificity of presenilin-1- and presenilin-2-dependent gamma-secretases towards substrate processing [J]. J Cell Mol Med, 2018, 22(2): 823-833.
17
Pendin D, Fasolato C, Basso E, et al. Familial Alzheimer's disease presenilin-2 mutants affect Ca2+ homeostasis and brain network excitability [J]. Aging Clin Exp Res, 2021, 33(6): 1705-1708.
18
Hu C, Xu J, Zeng L, et al. Pen-2 and presenilin are sufficient to catalyze notch processing [J]. J Alzheimers Dis, 2017, 56(4): 1263-1269.
19
Duan Y, Ye T, Qu Z, et al. Brain-wide Cas9-mediated cleavage of a gene causing familial Alzheimer's disease alleviates amyloid-related pathologies in mice [J]. Nat Biomed Eng, 2022, 6(2): 168-180.
20
Zampese E, Fasolato C, Kipanyula MJ, et al. Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2+ cross-talk [J]. Proc Natl Acad Sci U S A, 2011, 108(7): 2777-2782.
21
Xiao X, Liu H, Liu X, et al. APP, PSEN1, and PSEN2 Variants in Alzheimer's disease: systematic re-evaluation according to ACMG guidelines [J]. Front Aging Neurosci, 2021, 13: 695808.
22
Kwart D, Gregg A, Scheckel C, et al. A large panel of isogenic APP and PSEN1 mutant human iPSC neurons reveals shared endosomal abnormalities mediated by APP beta-CTFs, not Abeta [J]. Neuron, 2019, 104(5): 1022.
23
Youn YC, Bagyinszky E, Kim H, et al. Probable novel PSEN2 Val214Leu mutation in Alzheimer's disease supported by structural prediction [J]. BMC neurology, 2014, 14: 105.
24
Ayodele T, Rogaeva E, Kurup JT, et al. Early-onset Alzheimer's disease: what is missing in research [J]. Curr Neurol Neurosci Rep, 2021, 21(2): 4.
25
Lohmann E, Guerreiro RJ, Erginel-Unaltuna N, et al. Identification of PSEN1 and PSEN2 gene mutations and variants in Turkish dementia patients [J]. Neurobiol Aging, 2012, 33(8): 1850 e1817-1827.
26
Li D, Parks SB, Kushner JD, et al. Mutations of presenilin genes in dilated cardiomyopathy and heart failure [J]. Am J Hum Genet, 2006, 79(6): 1030-1039.
27
Guven G, Samanci B, Gulec C, et al. A novel PSEN2 p.Ser175Phe variant in a family with Alzheimer's disease [J]. Neurol Sci, 2021, 42(6): 2497-2504.
28
Li D, Parks SB, Kushner JD, et al. Mutations of presenilin genes in dilated cardiomyopathy and heart failure [J]. Am J Hum Genet, 2006, 79(6): 1030-9
29
Shi Z, Wang Y, Liu S, et al. Clinical and neuroimaging characterization of Chinese dementia patients with PSEN1 and PSEN2 mutations [J]. Dement Geriatr Cogn Disord, 2015, 39(1-2): 32-40.
30
Bernardi L, Tomaino C, Anfossi M, et al. Novel PSEN1 and PGRN mutations in early-onset familial frontotemporal dementia [J]. Neurobiol Aging, 2009, 30(11): 1825-1833.
31
Nacmias B, Piaceri I, Bagnoli S, et al. Genetics of Alzheimer's disease and frontotemporal dementia [J]. Curr Mol Med, 2014, 14(8): 993-1000.
32
Hsu JL, Lin CH, Chen PL, et al. Genetic study of young-onset dementia using targeted gene panel sequencing in Taiwan [J]. Am J Med Genet B Neuropsychiatr Genet, 2021, 186(2): 67-76.
33
Gallo M, Tomaino C, Puccio G, et al. Novel MAPT Val75Ala mutation and PSEN2 Arg62Hys in two siblings with frontotemporal dementia [J]. Neurol Sci, 2010, 31(1): 65-70.
34
Meeus B, Verstraeten A, Crosiers D, et al. DLB and PDD: a role for mutations in dementia and Parkinson disease genes [J]. Neurobiol Aging, 2012, 33(3): 629 e625-629 e618.
35
Kwok JB, Loy CT, Dobson-Stone C, et al. The complex relationship between genotype, pathology and phenotype in familial dementia [J]. Neurobiol Dis, 2020, 145: 105082.
36
Miyamoto M, Miyamoto T. Montreal cognitive assessment predicts the short-term risk of Lewy body disease in isolated REM sleep behavior disorder with reduced MIBG scintigraphy [J]. Mov Disord Clin Pract, 2022, 10(1): 32-41.
37
Bekris LM, Tsuang DW, Peskind ER, et al. Cerebrospinal fluid Aβ 42 levels and APP processing pathway genes in Parkinson's disease [J]. Mov Disord, 2015, 30(7): 936-944.
38
Zeng Q, Pan H, Zhao Y, et al. Evaluation of common and rare variants of Alzheimer's disease-causal genes in Parkinson's disease [J]. Parkinsonism Relat Disord, 2022, 97: 8-14.
39
Perrone F, Cacace R, Van Mossevelde S, et al. Genetic screening in early-onset dementia patients with unclear phenotype: relevance for clinical diagnosis [J]. Neurobiol Aging, 2018, 69: 292.e297-e214.
40
Lange J, Lunde KA, Sletten C, et al. Association of a BACE1 gene polymorphism with Parkinson's disease in a norwegian population [J]. Parkinsons Dis, 2015, 2015: 973298.
41
Li XY, Cui Y, Jing D, et al. Novel PSEN1 and PSEN2 mutations identified in sporadic early-onset Alzheimer disease and posterior cortical atrophy [J]. Alzheimer Dis Assoc Disord, 2021, 35(3): 208-213.
42
Carrasquillo MM, Barber I, Lincoln SJ, et al. Evaluating pathogenic dementia variants in posterior cortical atrophy [J]. Neurobiol Aging, 2016, 37: 38-44.
43
Tremolizzo L, Susani E, Mapelli C, et al. First report of PSEN2 mutation presenting as posterior cortical atrophy [J]. Alzheimer Dis Assoc Disord, 2015, 29(3): 249-251.
44
Luzzis S, Fioric C, Ranaldi V, et al. Allochiria for spatial landmarks as the presenting feature of posterior cortical atrophy [J]. Cortex, 2022, 157: 274-287.
[1] 王诗远, 张爱华. 慢性肾脏病相关认知障碍的发生机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(03): 163-167.
[2] 李瑞雨, 王新亮, 徐丛丛, 刘严泽, 张雪竹. 国内外血管性认知障碍临床试验注册现状分析[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(01): 14-20.
[3] 张萌, 喻中华. 阿尔茨海默病患者血清脂联素、Lp-PLA2、IL-17的表达及与认知功能的相关性分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 358-363.
[4] 马良飞, 尹翎, 方婷, 曾西西, 佟佳璇, 马献昆. 重复经颅磁刺激联合虚拟现实技术对脑卒中后认知障碍的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 346-351.
[5] 郭翃江, 符雪彩, 朱妍妍, 严之红, 王丽娜, 纪红. 基于影响因素的老年阿尔茨海默病认知功能障碍预测模型构建及电子化认知康复训练的应用价值[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 156-161.
[6] 常文轩, 王婷, 刘伟, 蓝天琦, 彭静, 汪诗瑶, 张晓鹏, 冯晨, 宫雪梅, 朱敏. 脑小血管病所致执行障碍的研究进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 179-182.
[7] 赵金义, 孙正莹, 李洪义, 胡明成, 王晓申, 史晓航, 王煜宁, 孙维洋, 邢健. 基于结构磁共振成像评估皮质下缺血性脑血管病伴认知障碍患者灰质萎缩的影像学研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(01): 10-14.
[8] 江碧艳, 刘彩霞, 杨舒岚, 楼巍敏, 陈凌燕, 陈春英. 痴呆老年人团体活动实施方案的构建[J]. 中华老年病研究电子杂志, 2023, 10(02): 37-43.
[9] 孙畅, 赵世刚, 白文婷. 脑卒中后认知障碍与内分泌激素变化的关系[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 471-476.
[10] 王道合, 施媛媛. 8-iso-PGF2α及P选择素在评估脑小血管病患者认知功能中的价值[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 364-368.
[11] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
[12] 黄晓红, 苏宁, 朱以诚. 社区人群队列的步态和不良预后相关性研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 271-274.
[13] 张宇, 蔡玉洁, 林日清, 邱钦杰, 崔理立, 郑东, 周海红. 张力蛋白1对放射性脑损伤小鼠认知功能的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 244-253.
[14] 张丁丁, 张江霞, 苏宁, 徐运, 汪凯, 许予明, 李震中, 胡波, 王丽华, 吴波, 楚兰, 汪银洲, 江泓, 陆正齐, 武剑, 范向民, 韩菲, 姚明, 周立新, 倪俊, 田丰, 袁晶, 朱以诚. 中国认知正常成年人数字化认知常模制定的全国多中心临床研究[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 179-199.
[15] 楚长彪. 卒中后认知障碍的管理[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 0-0.
阅读次数
全文


摘要