| 1 | 胡文立, 杨磊, 李譞婷, 等. 中国脑小血管病诊治专家共识2021 [J]. 中国卒中杂志, 2021, 16(7): 716-726. | 
																													
																						| 2 | 黄勇华, 赵弘轶. 脑小血管病的现状和展望 [J/OL]. 中华脑血管病杂志(电子版), 2020, 14(1): 33-36. | 
																													
																						| 3 | Geranmayeh MH, Rahbarghazi R, Farhoudi M. Targeting pericytes for neurovascular regeneration [J]. Cell Commun Signal, 2019, 17(1): 26. | 
																													
																						| 4 | Grubb S, Lauritzen M, Aalkjær C. Brain capillary pericytes and neurovascular coupling [J]. Comp Biochem Physiol A Mol Integr Physiol, 2021, 254: 110893. | 
																													
																						| 5 | Zambach SA, Cai C, Helms HCC, et al. Precapillary sphincters and pericytes at first-order capillaries as key regulators for brain capillary perfusion [J]. Proc Natl Acad Sci U S A, 2021, 118(26): e2023749118. | 
																													
																						| 6 | Cai C, Fordsmann JC, Jensen SH, et al. Stimulation-induced increases in cerebral blood flow and local capillary vasoconstriction depend on conducted vascular responses [J]. Proc Natl Acad Sci U S A, 2018, 115(25): e5796-e5804. | 
																													
																						| 7 | Rungta RL, Chaigneau E, Osmanski BF, et al. Vascular compartmentalization of functional hyperemia from the synapse to the pia [J]. Neuron, 2018, 99(2): 362-375. | 
																													
																						| 8 | Chow BW, Nuñez V, Kaplan L, et al. Caveolae in CNS arterioles mediate neurovascular coupling [J]. Nature, 2020, 579(7797): 106-110. | 
																													
																						| 9 | Goedicke-Fritz S, Kaistha A, Kacik M, et al. Evidence for functional and dynamic microcompartmentation of Cav-1/TRPV4/K(Ca) in caveolae of endothelial cells [J]. Eur J Cell Biol, 2015, 94(7-9): 391-400. | 
																													
																						| 10 | Sperti M, Arba F, Acerbi A, et al. Determinants of cerebral collateral circulation in acute ischemic stroke due to large vessel occlusion [J]. Front Neurol, 2023, 14: 1181001. | 
																													
																						| 11 | Liu L, Guo M, Lv X, et al. Role of transient receptor potential vanilloid 4 in vascular function [J]. Front Mol Biosci, 2021, 8: 677661. | 
																													
																						| 12 | Hainsworth AH, Markus HS, Schneider JA. Cerebral small vessel disease, hypertension, and vascular contributions to cognitive impairment and dementia [J]. Hypertension, 2024, 81(1): 75-86. | 
																													
																						| 13 | Jiang S, Wu S, Zhang S, et al. Advances in understanding the pathogenesis of lacunar stroke: from pathology and pathophysiology to neuroimaging [J]. Cerebrovasc Dis, 2021, 50(5): 588-596. | 
																													
																						| 14 | Staehr C, Giblin JT, Gutiérrez-Jiménez E, et al. Neurovascular uncoupling is linked to microcirculatory dysfunction in regions outside the ischemic core following ischemic stroke [J]. J Am Heart Assoc, 2023, 12(11): e029527. | 
																													
																						| 15 | Zhang D, Ruan J, Peng S, et al. Synaptic-like transmission between neural axons and arteriolar smooth muscle cells drives cerebral neurovascular coupling [J]. Nat Neurosci, 2024, 27(2): 232-248. | 
																													
																						| 16 | Rüwald JM, Jacobs C, Scheidt S, et al. Laser-based techniques for microcirculatory assessment in orthopedics and trauma surgery: past, present, and future [J]. Ann Surg, 2019, 270(6): 1041-1048. | 
																													
																						| 17 | Goldberg J, Miller DR, Dimanche A, et al. Intraoperative laser speckle contrast imaging to assess vessel flow in neurosurgery: a pilot study [J]. Neurosurgery, 2023. Online ahead of print. | 
																													
																						| 18 | Miller DR, Ashour R, Sullender CT, et al. Continuous blood flow visualization with laser speckle contrast imaging during neurovascular surgery [J]. Neurophotonics, 2022, 9(2): 021908. | 
																													
																						| 19 | Chen Q, Song H, Yu J, et al. Current development and applications of super-resolution ultrasound imaging [J]. Sensors (Basel), 2021, 21(7): 2417. | 
																													
																						| 20 | Errico C, Pierre J, Pezet S, et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging [J]. Nature, 2015, 527(7579): 499-502. | 
																													
																						| 21 | Lowerison MR, Sekaran NVC, Zhang W, et al. Aging-related cerebral microvascular changes visualized using ultrasound localization microscopy in the living mouse [J]. Sci Rep, 2022, 12(1): 619. | 
																													
																						| 22 | Bourquin C, Poree J, Lesage F, et al. In vivo pulsatility measurement of cerebral microcirculation in rodents using dynamic ultrasound localization microscopy [J]. IEEE Trans Med Imaging, 2022, 41(4): 782-792. | 
																													
																						| 23 | Soulioti DE, Espindola D, Dayton PA, et al. Super-resolution imaging through the human skull [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2020, 67(1): 25-36. | 
																													
																						| 24 | Demené C, Robin J, Dizeux A, et al. Transcranial ultrafast ultrasound localization microscopy of brain vasculature in patients [J]. Nat Biomed Eng, 2021, 5(3): 219-228. | 
																													
																						| 25 | Favre H, Pernot M, Tanter M, et al. Boosting transducer matrix sensitivity for 3D large field ultrasound localization microscopy using a multi-lens diffracting layer: a simulation study [J]. Phys Med Biol, 2022, 67(8): 085009. | 
																													
																						| 26 | Favre H, Pernot M, Tanter M, et al. Transcranial 3D ultrasound localization microscopy using a large element matrix array with a multi-lens diffracting layer: anin vitrostudy [J]. Phys Med Biol, 2023, 68(7): 075003. | 
																													
																						| 27 | Demeulenaere O, Bertolo A, Pezet S, et al. In vivo whole brain microvascular imaging in mice using transcranial 3D ultrasound localization microscopy [J]. EBioMedicine, 2022, 79: 103995. | 
																													
																						| 28 | Van Sloun RJG, Solomon O, Bruce M, et al. Super-resolution ultrasound localization microscopy through deep learning [J]. IEEE Trans Med Imaging, 2021, 40(3): 829-839. | 
																													
																						| 29 | Yan J, Zhang T, Broughton-Venner J, et al. Super-resolution ultrasound through sparsity-based deconvolution and multi-feature tracking [J]. IEEE Trans Med Imaging, 2022, 41(8): 1938-1947. | 
																													
																						| 30 | Ma H, Yang Y, Gao M, et al. A novel rat model of cerebral small vessel disease and evaluation by super-resolution ultrasound imaging [J]. J Neurosci Methods, 2022, 379: 109673. | 
																													
																						| 31 | Dong B, Yao J, Deán-Ben XL. Editorial: advances in photoacoustic neuroimaging [J]. Front Neurosci, 2022, 16: 859515. | 
																													
																						| 32 | Steinberg I, Huland DM, Vermesh O, et al. Photoacoustic clinical imaging [J]. Photoacoustics, 2019, 14: 77-98. | 
																													
																						| 33 | Zhu B, Li H, Xie C, et al. Photoacoustic microscopic imaging of cerebral vessels for intensive monitoring of metabolic acidosis [J]. Mol Imaging Biol, 2023, 25(4): 659-670. | 
																													
																						| 34 | Zhong X, Liang Y, Wang X, et al. Free-moving-state microscopic imaging of cerebral oxygenation and hemodynamics with a photoacoustic fiberscope [J]. Light Sci Appl, 2024, 13(1): 5. |