切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 281 -284. doi: 10.11817/j.issn.1673-9248.2024.03.015

综述

脑微循环成像技术在脑小血管病中的应用研究进展
王梦欣1, 李莫凡1, 王淑敏1,()   
  1. 1. 100089 北京大学第三医院超声科
  • 收稿日期:2023-12-29 出版日期:2024-06-01
  • 通信作者: 王淑敏
  • 基金资助:
    国家自然科学基金资助(82372561)

Advances in the application of cerebral microcirculation imaging technology in cerebral small vessel disease

Mengxin Wang1, Mofan Li1, Shumin Wang1,()   

  1. 1. Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
  • Received:2023-12-29 Published:2024-06-01
  • Corresponding author: Shumin Wang
引用本文:

王梦欣, 李莫凡, 王淑敏. 脑微循环成像技术在脑小血管病中的应用研究进展[J]. 中华脑血管病杂志(电子版), 2024, 18(03): 281-284.

Mengxin Wang, Mofan Li, Shumin Wang. Advances in the application of cerebral microcirculation imaging technology in cerebral small vessel disease[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2024, 18(03): 281-284.

脑小血管病好发于老年人群,是脑卒中和血管性痴呆的常见原因。脑小血管病中,血管发生一系列病理生理改变导致微循环障碍,对微循环形态改变及血流动力学调控的深入理解有助于疾病的诊疗与监控。本文介绍了脑微循环及其调控与脑小血管病的关系,以及目前在脑微循环成像中应用的一些新技术,对其成像监控方法进行了总结,为临床进行脑小血管病的微循环监控提供思路。

Cerebral small vessel disease (CSVD) is a prevalent cause of stroke and vascular dementia, particularly in the elderly population. In CSVD, a series of pathophysiological changes of blood vessels lead to microcirculation disorders. A deeper understanding of the morphological changes and hemodynamic regulation of microcirculation is helpful for the diagnosis, treatment and monitoring of CSVD. This paper introduces the relationship between the regulation of cerebral microcirculation and CSVD, as well as the novel techniques applied in cerebral microcirculation imaging at present, to offer insights that could enhance clinical monitoring of cerebral microcirculation in CSVD.

1
胡文立, 杨磊, 李譞婷, 等. 中国脑小血管病诊治专家共识2021 [J]. 中国卒中杂志, 2021, 16(7): 716-726.
2
黄勇华, 赵弘轶. 脑小血管病的现状和展望 [J/OL]. 中华脑血管病杂志(电子版), 2020, 14(1): 33-36.
3
Geranmayeh MH, Rahbarghazi R, Farhoudi M. Targeting pericytes for neurovascular regeneration [J]. Cell Commun Signal, 2019, 17(1): 26.
4
Grubb S, Lauritzen M, Aalkjær C. Brain capillary pericytes and neurovascular coupling [J]. Comp Biochem Physiol A Mol Integr Physiol, 2021, 254: 110893.
5
Zambach SA, Cai C, Helms HCC, et al. Precapillary sphincters and pericytes at first-order capillaries as key regulators for brain capillary perfusion [J]. Proc Natl Acad Sci U S A, 2021, 118(26): e2023749118.
6
Cai C, Fordsmann JC, Jensen SH, et al. Stimulation-induced increases in cerebral blood flow and local capillary vasoconstriction depend on conducted vascular responses [J]. Proc Natl Acad Sci U S A, 2018, 115(25): e5796-e5804.
7
Rungta RL, Chaigneau E, Osmanski BF, et al. Vascular compartmentalization of functional hyperemia from the synapse to the pia [J]. Neuron, 2018, 99(2): 362-375.
8
Chow BW, Nuñez V, Kaplan L, et al. Caveolae in CNS arterioles mediate neurovascular coupling [J]. Nature, 2020, 579(7797): 106-110.
9
Goedicke-Fritz S, Kaistha A, Kacik M, et al. Evidence for functional and dynamic microcompartmentation of Cav-1/TRPV4/K(Ca) in caveolae of endothelial cells [J]. Eur J Cell Biol, 2015, 94(7-9): 391-400.
10
Sperti M, Arba F, Acerbi A, et al. Determinants of cerebral collateral circulation in acute ischemic stroke due to large vessel occlusion [J]. Front Neurol, 2023, 14: 1181001.
11
Liu L, Guo M, Lv X, et al. Role of transient receptor potential vanilloid 4 in vascular function [J]. Front Mol Biosci, 2021, 8: 677661.
12
Hainsworth AH, Markus HS, Schneider JA. Cerebral small vessel disease, hypertension, and vascular contributions to cognitive impairment and dementia [J]. Hypertension, 2024, 81(1): 75-86.
13
Jiang S, Wu S, Zhang S, et al. Advances in understanding the pathogenesis of lacunar stroke: from pathology and pathophysiology to neuroimaging [J]. Cerebrovasc Dis, 2021, 50(5): 588-596.
14
Staehr C, Giblin JT, Gutiérrez-Jiménez E, et al. Neurovascular uncoupling is linked to microcirculatory dysfunction in regions outside the ischemic core following ischemic stroke [J]. J Am Heart Assoc, 2023, 12(11): e029527.
15
Zhang D, Ruan J, Peng S, et al. Synaptic-like transmission between neural axons and arteriolar smooth muscle cells drives cerebral neurovascular coupling [J]. Nat Neurosci, 2024, 27(2): 232-248.
16
Rüwald JM, Jacobs C, Scheidt S, et al. Laser-based techniques for microcirculatory assessment in orthopedics and trauma surgery: past, present, and future [J]. Ann Surg, 2019, 270(6): 1041-1048.
17
Goldberg J, Miller DR, Dimanche A, et al. Intraoperative laser speckle contrast imaging to assess vessel flow in neurosurgery: a pilot study [J]. Neurosurgery, 2023. Online ahead of print.
18
Miller DR, Ashour R, Sullender CT, et al. Continuous blood flow visualization with laser speckle contrast imaging during neurovascular surgery [J]. Neurophotonics, 2022, 9(2): 021908.
19
Chen Q, Song H, Yu J, et al. Current development and applications of super-resolution ultrasound imaging [J]. Sensors (Basel), 2021, 21(7): 2417.
20
Errico C, Pierre J, Pezet S, et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging [J]. Nature, 2015, 527(7579): 499-502.
21
Lowerison MR, Sekaran NVC, Zhang W, et al. Aging-related cerebral microvascular changes visualized using ultrasound localization microscopy in the living mouse [J]. Sci Rep, 2022, 12(1): 619.
22
Bourquin C, Poree J, Lesage F, et al. In vivo pulsatility measurement of cerebral microcirculation in rodents using dynamic ultrasound localization microscopy [J]. IEEE Trans Med Imaging, 2022, 41(4): 782-792.
23
Soulioti DE, Espindola D, Dayton PA, et al. Super-resolution imaging through the human skull [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2020, 67(1): 25-36.
24
Demené C, Robin J, Dizeux A, et al. Transcranial ultrafast ultrasound localization microscopy of brain vasculature in patients [J]. Nat Biomed Eng, 2021, 5(3): 219-228.
25
Favre H, Pernot M, Tanter M, et al. Boosting transducer matrix sensitivity for 3D large field ultrasound localization microscopy using a multi-lens diffracting layer: a simulation study [J]. Phys Med Biol, 2022, 67(8): 085009.
26
Favre H, Pernot M, Tanter M, et al. Transcranial 3D ultrasound localization microscopy using a large element matrix array with a multi-lens diffracting layer: anin vitrostudy [J]. Phys Med Biol, 2023, 68(7): 075003.
27
Demeulenaere O, Bertolo A, Pezet S, et al. In vivo whole brain microvascular imaging in mice using transcranial 3D ultrasound localization microscopy [J]. EBioMedicine, 2022, 79: 103995.
28
Van Sloun RJG, Solomon O, Bruce M, et al. Super-resolution ultrasound localization microscopy through deep learning [J]. IEEE Trans Med Imaging, 2021, 40(3): 829-839.
29
Yan J, Zhang T, Broughton-Venner J, et al. Super-resolution ultrasound through sparsity-based deconvolution and multi-feature tracking [J]. IEEE Trans Med Imaging, 2022, 41(8): 1938-1947.
30
Ma H, Yang Y, Gao M, et al. A novel rat model of cerebral small vessel disease and evaluation by super-resolution ultrasound imaging [J]. J Neurosci Methods, 2022, 379: 109673.
31
Dong B, Yao J, Deán-Ben XL. Editorial: advances in photoacoustic neuroimaging [J]. Front Neurosci, 2022, 16: 859515.
32
Steinberg I, Huland DM, Vermesh O, et al. Photoacoustic clinical imaging [J]. Photoacoustics, 2019, 14: 77-98.
33
Zhu B, Li H, Xie C, et al. Photoacoustic microscopic imaging of cerebral vessels for intensive monitoring of metabolic acidosis [J]. Mol Imaging Biol, 2023, 25(4): 659-670.
34
Zhong X, Liang Y, Wang X, et al. Free-moving-state microscopic imaging of cerebral oxygenation and hemodynamics with a photoacoustic fiberscope [J]. Light Sci Appl, 2024, 13(1): 5.
[1] 马四清, 陈强, 徐颖, 闫秀娟, 刘娟丽. 基于数据挖掘和网络拓扑学对藏药红景天调控脑微循环作用靶点和信号通路的筛选[J]. 中华重症医学电子杂志, 2022, 08(04): 353-359.
[2] 张轩, 冯明, 王倩, 薛蓉. 舒脑欣滴丸对脑小血管病患者客观睡眠和炎症标志物的影响[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 140-145.
[3] 常文轩, 王婷, 刘伟, 蓝天琦, 彭静, 汪诗瑶, 张晓鹏, 冯晨, 宫雪梅, 朱敏. 脑小血管病所致执行障碍的研究进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 179-182.
[4] 高倩, 李晓芳, 杨亚昭, 张静, 崔蕾, 杨立青, 夏艳敏. 甲状腺激素及Apelin在CSVD致认知障碍的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(02): 201-206.
[5] 欧春影, 李晓宾, 郭靖, 许可, 王梦, 安晓雷. hs-CRP、Lp-PLA2和S100β与缺血性脑小血管病患者认知障碍的相关性[J]. 中华脑血管病杂志(电子版), 2024, 18(03): 265-269.
[6] 沈洁, 谢鸿阳, 夏翠俏, 黄勇华. 脑小血管病与认知衰弱的研究现状[J]. 中华脑血管病杂志(电子版), 2024, 18(02): 181-184.
[7] 丁文华, 王育伟, 邱景景, 杨琼, 耿玉荣. 脑小血管病影像学标志物与运动障碍研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 429-434.
[8] 白明悦, 杨淑娜, 胡红梅, 胡文立. 透析患者脑小血管病患病情况的研究现状及其机制探讨[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 505-509.
[9] 晏美娟, 邵礼晖. 高水平脂蛋白(a)与无“三高”老年人群小动脉硬化型脑小血管病的相关性研究[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 458-463.
[10] 刘琳, 张奇山, 廖蔓倩, 陈余榕, 李倍, 何玉成, 唐圣桃. HTRA1相关常染色体显性脑小血管病家系报告并文献复习[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 379-385.
[11] 王道合, 施媛媛. 8-iso-PGF2α及P选择素在评估脑小血管病患者认知功能中的价值[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 364-368.
[12] 胡红梅, 胡文立. 脑小血管病总负担评估量表的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 145-149.
[13] 李卓然, 胡文立. 内皮功能、炎症、神经系统退行性疾病的生物标志物与小动脉硬化型CSVD的关联[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 57-60.
[14] 张兴文, 侯磊, 冉晔, 田成林. 急性多发性缺血性脑小血管病10例临床分析[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 22-25.
[15] 刘欣, 王丽娟, 刘荧, 王爽, 徐绍红, 李小刚. 缺血性脑卒中后不同程度认知障碍危险因素及认知训练效果分析[J]. 中华脑血管病杂志(电子版), 2022, 16(05): 314-319.
阅读次数
全文


摘要