切换至 "中华医学电子期刊资源库"

中华脑血管病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (04) : 382 -392. doi: 10.11817/j.issn.1673-9248.2024.04.015

综述

补体在缺血性卒中疾病中的研究进展
唐欣1, 翟文海1, 王润婷1, 周胜宇1, 靳航1,()   
  1. 1. 130021 吉林长春,吉林大学第一医院神经内科
  • 收稿日期:2023-11-27 出版日期:2024-08-01
  • 通信作者: 靳航
  • 基金资助:
    吉林省科技发展计划项目(YDZJ202301ZYTS505)

Research progress on the role of complement in ischemic stroke

Xin Tang1, Wenhai Zhai1, Runting Wang1, Shengyu Zhou1, Hang Jin1,()   

  1. 1. Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
  • Received:2023-11-27 Published:2024-08-01
  • Corresponding author: Hang Jin
引用本文:

唐欣, 翟文海, 王润婷, 周胜宇, 靳航. 补体在缺血性卒中疾病中的研究进展[J]. 中华脑血管病杂志(电子版), 2024, 18(04): 382-392.

Xin Tang, Wenhai Zhai, Runting Wang, Shengyu Zhou, Hang Jin. Research progress on the role of complement in ischemic stroke[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2024, 18(04): 382-392.

缺血性卒中发病率和致残率高,缺少除再灌注治疗之外的能有效减少神经功能缺损的措施。补体系统蛋白参与缺血性卒中相关的炎症反应。补体的表达受缺血性卒中不同时期的影响。补体第1成分q(C1q)对缺血性卒中的发生具有一定的预测价值,可能与其对动脉粥样硬化的调节有关。补体系统蛋白参与动脉血栓形成可能导致血栓栓塞性事件的发生。C1q、甘露糖结合凝集素(MBL)、补体(C)3和膜攻击复合物(MAC)的血清浓度与缺血性卒中导致的神经功能缺损的严重程度相关,其中高水平MBL、C3、MAC提示缺血性卒中预后不良。补体参与脑缺血再灌注损伤并与卒中后认知障碍有关。C3和C5对卒中后功能恢复具有双重作用。C4对评估合并糖尿病的卒中病情更有意义。目前基础实验研究多通过调节补体受体的表达来治疗缺血性脑损伤。本文主要综述了近五年补体系统蛋白在缺血性卒中疾病中的发病机制和评估卒中严重程度及预后中的研究,以期为缺血性卒中自起病到远期预后过程中的治疗提供思路。

Ischemic stroke presents significant morbidity and disability, with limited therapeutic options beyond reperfusion therapy to effectively reduce neurologic deficits. The inflammatory response associated with ischemic stroke involves the complement system proteins. The expression of complement is temporally influenced during distinct phases of ischemic stroke. Complement component 1q (C1q) demonstrates a discernable predictive value in relation to the onset of ischemic stroke, potentially attributable to its regulatory impact on atherosclerosis. Complement system proteins implicated in arterial thrombosis pose a risk of precipitating thromboembolic events. The serum concentrations of C1q, mannose-binding lectin (MBL), complement 3 (C3), and membrane attack complex (MAC) exhibit correlations with the severity of neurologic deficits resulting from ischemic stroke. Elevated levels of MBL, C3, and MAC are indicative of a less favorable prognosis in ischemic stroke cases. Complement plays a role in cerebral ischemia-reperfusion injury and is associated with post-stroke cognitive impairment. Both C3 and complement 5 (C5) exert a dual effect on functional recovery following stroke. Complement 4 (C4) proves to be more clinically informative in evaluating strokes occurring in the context of diabetes. Currently, the majority of foundational experimental studies focus on the treatment of ischemic brain injury through the modulation of complement receptor expression. This article reviews the research on the pathogenesis of ischemic stroke and the evaluation of stroke severity and prognosis in the past five years, in order to provide ideas for the treatment of ischemic stroke from onset to long-term prognosis.

图1 补体激活的主要途径及主要补体(C)成分 注:C1q为补体第1成分q,C1r为补体第1成分r,C1s为补体第1成分s,MBL为甘露糖结合凝集素,MASP为人甘露聚糖结合凝集素丝氨酸肽酶
表1 补体在脑缺血不同时间段水平的变化
表2 补体治疗在脑缺血实验模型中的应用
干预措施 主要作用机制 结局 模型类型 文献
C1INH 抑制补体经典途径、凝集素途径。减少损伤部位C3b沉积,降低Toll样受体2的水平 好转 局灶性脑缺血再灌注小鼠模型 [28]
重组人C1INH 抑制补体凝集素途径。减少C4b,抑制MBL-A和MBL-C依赖性信号 好转 短暂MCAO/R小鼠模型 [106]
RLS-0071 抑制补体经典途径。介导局部C1q水平的变化 好转 HIE大鼠模型 [108]
B4Crry 抑制C3、C3a、C5a和MAC的产生,抑制小胶质细胞活化 好转 小鼠栓塞性卒中后使用t-PA溶栓 [72]
抑制经典途径和旁路途径。抑制C1q、因子B和C3的表达,促进补体抑制剂CD55和抗凋亡Bcl-2基因的表达,抑制干扰素γ、干扰素调节因子、核因子-κB、STAT3表达,抑制小胶质细胞活化 好转 OGD/R体外模型,MCAO/R小鼠模型 [101]
治疗性低温 抑制补体经典途径。抑制系统性C1q、C5a的表达,抑制小胶质细胞C1q的表达,减少小胶质细胞和神经元中C3和C9的沉积,抑制凋亡细胞上C1q的结合 好转 HIE大鼠模型 [112]
内皮祖细胞移植 抑制C3/C3aR通路。抑制星形胶质细胞来源的C3和C3aR表达 好转 短暂MCAO小鼠模型 [107]
SB290157 减少血管细胞黏附分子1、ICAM-1、E-选择素和P-选择素,减少中性粒细胞黏附 好转 OGD/R体外模型 [113]
抑制小胶质细胞活化和小胶质细胞重新分配到髓磷脂 好转 二血管阻塞慢性脑缺血大鼠模型 [29]
抑制小胶质细胞的炎症形态变化 好转 MCAO小鼠模型 [102]
抑制内皮细胞中ICAM-1、环氧化酶2、还原型辅酶Ⅱ和锰超氧化物歧化酶,抑制ERK的激活,抑制氧化应激,利于恢复内皮细胞的紧密连接 好转 OGD体外模型 [42]
DF3016A 抑制C5a受体转录,抑制促炎细胞因子过表达,抑制微小RNA-181a过表达 好转 OGD/R体外模型 [114]
抑制微小RNA-132表达,提高BDNF水平 好转 OGD/R体外模型 [111]
PMX53 选择性抑制C5a受体,降低肿瘤坏死因子-α、白介素-1β、白介素-6水平,抑制TLR4/NF-κB 好转 MCAO/R大鼠模型,OGD/R体外模型 [107110]
CR2fH 抑制补体受体2,抑制补体旁路途径。降低肿瘤坏死因子-α并升高BDNF水平。减少星形胶质细胞瘢痕形成 好转 短暂MCAO小鼠模型 [103]
抑制补体旁路途径 好转 小鼠栓塞性卒中后使用t-PA溶栓 [103]
抗CD11b mAb 抑制补体受体3(CR3),削弱小胶质细胞吞噬髓鞘碎片的能力 恶化 体内永久性MCAO模型 [115]
LA-1 激动CR3,增加突触素和突触后致密蛋白-95的表达 好转 短暂MCAO小鼠模型 [116]
远隔缺血处理 激活补体经典途径,上调补体 C3、C4b结合蛋白β链亚型X2、补体 C1s 亚组分 好转 MCAO成年恒河猴模型 [117]
图2 补体治疗作用靶点。本图展示了缺血性卒中实验模型中干预措施对补体系统的影响 注:C为补体,R为受体,C1q为补体第1成分q,C1r为补体第1成分r,C1s为补体第1成分s,MBL为甘露糖结合凝集素,MASP为人甘露聚糖结合凝集素丝氨酸肽酶,gC1qR为补体C1q结合蛋白,C1INH为C1酯酶抑制剂,RLS-0071为双作用补体抑制剂,B4Crry为损伤部位靶向C3抑制剂,TH为治疗性低温,EPC为内皮祖细胞,RIC为远隔缺血处理,SB290157为C3a受体拮抗剂,PMX53和DF3016A为选择性C5a受体抑制剂,CR2fH为补体受体2拮抗剂,抗CD11b mAb为抗CD11b单克隆抗体,LA-1为补体受体3激动剂
1
Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019 [J]. Lancet Neurol, 2021, 20(10): 795-820.
2
Gu X, Li Y, Chen S, et al. Association of lipids with ischemic and hemorrhagic stroke: a prospective cohort study among 267 500 Chinese [J]. Stroke, 2019, 50(12): 3376-3384.
3
Hackam DG. Optimal medical management of asymptomatic carotid stenosis [J]. Stroke, 2021, 52(6): 2191-2198.
4
Gorelick PB, Wong KS, Bae HJ, et al. Large artery intracranial occlusive disease: a large worldwide burden but a relatively neglected frontier [J]. Stroke, 2008, 39(8): 2396-2399.
5
Björkegren JLM, Lusis AJ. Atherosclerosis: recent developments [J]. Cell, 2022, 185(10): 1630-1645.
6
Tsivgoulis G, Katsanos AH, Sandset EC, et al. Thrombolysis for acute ischaemic stroke: current status and future perspectives [J]. Lancet Neurol, 2023, 22(5): 418-429.
7
Widimsky P, Snyder K, Sulzenko J, et al. Acute ischaemic stroke: recent advances in reperfusion treatment [J]. Eur Heart J, 2023, 44(14): 1205-1215.
8
Zhou Y, He Y, Yan S, et al. Reperfusion injury is associated with poor outcome in patients with recanalization after thrombectomy [J]. Stroke, 2023, 54(1): 96-104.
9
张运, 裴月红, 傅瑜. 急性缺血性卒中静脉溶栓治疗进展 [J/OL]. 中华脑血管病杂志(电子版), 2023, 17(2): 83-88.
10
Ma Y, Liu Y, Zhang Z, et al. Significance of complement system in ischemic stroke: a comprehensive review [J]. Aging Dis, 2019, 10(2): 429-462.
11
Walport MJ. Complement. First of two parts [J]. N Engl J Med, 2001, 344(14): 1058-1066.
12
Walport MJ. Complement. Second of two parts [J]. N Engl J Med, 2001, 344(15): 1140-1144.
13
Coppin L, Sokal E, Stéphenne X. Thrombogenic risk induced by intravascular mesenchymal stem cell therapy: current status and future perspectives [J]. Cells, 2019, 8(10): 1160.
14
Harrison RA. The properdin pathway: an "alternative activation pathway" or a "critical amplification loop" for C3 and C5 activation? [J]. Semin Immunopathol, 2018, 40(1): 15-35.
15
Xie CB, Jane-Wit D, Pober JS. Complement membrane attack complex: new roles, mechanisms of action, and therapeutic targets [J]. Am J Pathol, 2020, 190(6): 1138-1150.
16
Mitaki S, Wada Y, Sheikh AM, et al. Proteomic analysis of extracellular vesicles enriched serum associated with future ischemic stroke [J]. Sci Rep, 2021, 11(1): 24024.
17
Xing Z, Wang Y, Gong K, et al. Plasma C4 level was associated with mortality, cardiovascular and cerebrovascular complications in hemodialysis patients [J]. BMC Nephrol, 2022, 23(1): 232.
18
Zhang ZG, Wang C, Wang J, et al. Prognostic value of mannose-binding lectin: 90-day outcome in patients with acute ischemic stroke [J]. Mol Neurobiol, 2015, 51(1): 230-239.
19
Zheng M, Wang X, Yang J, et al. Changes of complement and oxidative stress parameters in patients with acute cerebral infarction or cerebral hemorrhage and the clinical significance [J]. Exp Ther Med, 2020, 19(1): 703-709.
20
Zhang B, Yang N, Gao C. Is plasma C3 and C4 levels useful in young cerebral ischemic stroke patients? Associations with prognosis at 3 months [J]. J Thromb Thrombolysis, 2015, 39(2): 209-214.
21
Yang P, Zhu Z, Zang Y, et al. Increased serum complement c3 levels are associated with adverse clinical outcomes after ischemic stroke [J]. Stroke, 2021, 52(3): 868-877.
22
Si W, He P, Wang Y, et al. Complement complex C5b-9 levels are associated with the clinical outcomes of acute ischemic stroke and carotid plaque stability [J]. Transl Stroke Res, 2019, 10(3): 279-286.
23
Hu ZP, Wu F, Du YH, et al. Association between serum complement 1q and the associated factors of acute ischemic stroke in patients with type 2 diabetes [J]. Hum Exp Toxicol, 2023, 42: 9603271231188291.
24
Zhang X, Yin J, Shao K, et al. High serum complement component C4 as a unique predictor of unfavorable outcomes in diabetic stroke [J]. Metab Brain Dis, 2021, 36(8): 2313-2322.
25
Neglia L, Oggioni M, Mercurio D, et al. Specific contribution of mannose-binding lectin murine isoforms to brain ischemia/reperfusion injury [J]. Cell Mol Immunol, 2020, 17(3): 218-226.
26
Li L, Dong L, Xiao Z, et al. Integrated analysis of the proteome and transcriptome in a MCAO mouse model revealed the molecular landscape during stroke progression [J]. J Adv Res, 2020, 24: 13-27.
27
Lin Z, Lin H, Li W, et al. Complement component C3 promotes cerebral ischemia/reperfusion injury mediated by TLR2/NFκB activation in diabetic mice [J]. Neurochem Res, 2018, 43(8): 1599-1607.
28
Chen X, Arumugam TV, Cheng YL, et al. Combination therapy with low-dose IVIG and a C1-esterase inhibitor ameliorates brain damage and functional deficits in experimental ischemic stroke [J]. Neuromolecular Med, 2018, 20(1): 63-72.
29
Zhang LY, Pan J, Mamtilahun M, et al. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion [J]. Theranostics, 2020, 10(1): 74-90.
30
Ahmad S, Pandya C, Kindelin A, et al. C3a receptor antagonist therapy is protective with or without thrombolysis in murine thromboembolic stroke [J]. Br J Pharmacol, 2020, 177(11): 2466-2477.
31
Wang DD, Hou XH, Li HQ, et al. Association of serum complement C1q concentration with severity of neurological impairment and infarct size in patients with acute ischemic stroke [J]. J Stroke Cerebrovasc Dis, 2020, 29(12): 105363.
32
Grossi C, Artusi C, Meroni P, et al. β2 glycoprotein I participates in phagocytosis of apoptotic neurons and in vascular injury in experimental brain stroke [J]. J Cereb Blood Flow Metab, 2021, 41(8): 2038-2053.
33
Sasaki S, Nishihira K, Yamashita A, et al. Involvement of enhanced expression of classical complement C1q in atherosclerosis progression and plaque instability: C1q as an indicator of clinical outcome [J]. PLoS One, 2022, 17(1): e0262413.
34
Van Dam-Nolen DHK, Truijman MTB, Van Der Kolk AG, et al. Carotid plaque characteristics predict recurrent ischemic stroke and TIA: the PARISK (Plaque At RISK) study [J]. JACC Cardiovasc Imaging, 2022, 15(10): 1715-1726.
35
林雨, 王艳玲. 颈动脉斑块易损性的评估与干预的研究进展 [J/OL]. 中华脑血管病杂志(电子版), 2023, 17(1): 66-69.
36
Niyonzima N, Bakke SS, Gregersen I, et al. Cholesterol crystals use complement to increase NLRP3 signaling pathways in coronary and carotid atherosclerosis [J]. EBioMedicine, 2020, 60: 102985.
37
Yurdagul AJr, Doran AC, Cai B, et al. Mechanisms and consequences of defective efferocytosis in atherosclerosis [J]. Front Cardiovasc Med, 2017, 4: 86.
38
Wicker-Planquart C, Dufour S, Tacnet-Delorme P, et al. Molecular and cellular interactions of scavenger receptor SR-F1 with complement C1q provide insights into its role in the clearance of apoptotic cells [J]. Front Immunol, 2020, 11: 544.
39
Manta CP, Leibing T, Friedrich M, et al. Targeting of scavenger receptors stabilin-1 and stabilin-2 ameliorates atherosclerosis by a plasma proteome switch mediating monocyte/macrophage suppression [J]. Circulation, 2022, 146(23): 1783-1799.
40
Rawish E, Sauter M, Sauter R, et al. Complement, inflammation and thrombosis [J]. Br J Pharmacol, 2021, 178(14): 2892-2904.
41
Sauter RJ, Sauter M, Reis ES, et al. Functional relevance of the anaphylatoxin receptor C3aR for platelet function and arterial thrombus formation marks an intersection point between innate immunity and thrombosis [J]. Circulation, 2018, 138(16): 1720-1735.
42
Ahmad S, Kindelin A, Khan SA, et al. C3a receptor inhibition protects brain endothelial cells against oxygen-glucose deprivation/reperfusion [J]. Exp Neurobiol, 2019, 28(2): 216-228.
43
Li Y, Xin G, Li S, et al. PD-L1 regulates platelet activation and thrombosis via caspase-3/GSDME pathway [J]. Front Pharmacol, 2022, 13: 921414.
44
Santos-López J, De La Paz K, Fernández FJ, et al. Structural biology of complement receptors [J]. Front Immunol, 2023, 14: 1239146.
45
Aiello S, Gastoldi S, Galbusera M, et al. C5a and C5aR1 are key drivers of microvascular platelet aggregation in clinical entities spanning from aHUS to COVID-19 [J]. Blood Adv, 2022, 6(3): 866-881.
46
Cui J, Li H, Chen Z, et al. Thrombo-inflammation and immunological response in ischemic stroke: focusing on platelet-tregs interaction [J]. Front Cell Neurosci, 2022, 16: 955385.
47
Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases [J]. Transl Res, 2020, 220: 1-13.
48
Loh JT, Zhang B, Teo JKH, et al. Mechanism for the attenuation of neutrophil and complement hyperactivity by MSC exosomes [J]. Cytotherapy, 2022, 24(7): 711-719.
49
Chen Y, Li X, Lin X, et al. Complement C5a induces the generation of neutrophil extracellular traps by inhibiting mitochondrial STAT3 to promote the development of arterial thrombosis [J]. Thromb J, 2022, 20(1): 24.
50
De Bont CM, Boelens WC, Pruijn GJM. NETosis, complement, and coagulation: a triangular relationship [J]. Cell Mol Immunol, 2019, 16(1): 19-27.
51
Martinod K, Wagner DD. Thrombosis: tangled up in NETs [J]. Blood, 2014, 123(18): 2768-2776.
52
Geddings JE, Mackman N. New players in haemostasis and thrombosis [J]. Thromb Haemost, 2014, 111(4): 570-574.
53
Simats A, García-Berrocoso T, Montaner J. Neuroinflammatory biomarkers: from stroke diagnosis and prognosis to therapy [J]. Biochim Biophys Acta, 2016, 1862(3): 411-424.
54
Freda CT, Yin W, Ghebrehiwet B, et al. Complement component C1q initiates extrinsic coagulation via the receptor for the globular head of C1q in adventitial fibroblasts and vascular smooth muscle cells [J]. Immun Inflamm Dis, 2023, 11(1): e769.
55
Wang M, Zhang Z, Liu D, et al. Soluble adhesion molecules and functional outcome after ischemic stroke: a mendelian randomization study [J]. J Stroke Cerebrovasc Dis, 2023, 32(6): 107136.
56
Wang YC, Li X, Shen Y, et al. PERK (Protein Kinase RNA-Like ER Kinase) branch of the unfolded protein response confers neuroprotection in ischemic stroke by suppressing protein synthesis [J]. Stroke, 2020, 51(5): 1570-1577.
57
Neglia L, Fumagalli S, Orsini F, et al. Mannose-binding lectin has a direct deleterious effect on ischemic brain microvascular endothelial cells [J]. J Cereb Blood Flow Metab, 2020, 40(8): 1608-1620.
58
Orsini F, Fumagalli S, Császár E, et al. Mannose-binding lectin drives platelet inflammatory phenotype and vascular damage after cerebral ischemia in mice via IL (interleukin)-1α [J]. Arterioscler Thromb Vasc Biol, 2018, 38(11): 2678-2690.
59
吴斌, 陈清清, 陈巨罗, 等. 补体C1q和肿瘤坏死因子相关蛋白9在缺血性脑卒中患者中的表达及意义 [J]. 中华老年心脑血管病杂志, 2022, 24(1): 59-62.
60
Molnar T, Csuka D, Pusch G, et al. Associations between serum L-arginine and ficolins in the early phase of acute ischemic stroke - a pilot study [J]. J Stroke Cerebrovasc Dis, 2020, 29(8): 104951.
61
Cao L, Cobbs A, Simon RP, et al. Distinct plasma proteomic changes in male and female African American stroke patients [J]. Int J Physiol Pathophysiol Pharmacol, 2019, 11(2): 12-20.
62
Clarke AR, Christophe BR, Khahera A, et al. Therapeutic modulation of the complement cascade in stroke [J]. Front Immunol, 2019, 10: 1723.
63
Torp MK, Ranheim T, Schjalm C, et al. Intracellular complement component 3 attenuated ischemia-reperfusion injury in the isolated buffer-perfused mouse heart and is associated with improved metabolic homeostasis [J]. Front Immunol, 2022, 13: 870811.
64
Klimova N, Fearnow A, Long A, et al. NAD(+) precursor modulates post-ischemic mitochondrial fragmentation and reactive oxygen species generation via SIRT3 dependent mechanisms [J]. Exp Neurol, 2020, 325: 113144.
65
Wang XX, Mao GH, Li QQ, et al. Neuroprotection of NAD(+) and NBP against ischemia/reperfusion brain injury is associated with restoration of sirtuin-regulated metabolic homeostasis [J]. Front Pharmacol, 2023, 14: 1096533.
66
Gong Z, Pan J, Shen Q, et al. Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury [J]. J Neuroinflammation, 2018, 15(1): 242.
67
Wang L, Ren W, Wu Q, et al. NLRP3 inflammasome activation: a therapeutic target for cerebral ischemia-reperfusion injury [J]. Front Mol Neurosci, 2022, 15: 847440.
68
Li J, Tian S, Wang H, et al. Protection of hUC-MSCs against neuronal complement C3a receptor-mediated NLRP3 activation in CUMS-induced mice [J]. Neurosci Lett, 2021, 741: 135485.
69
Dai S, Liu F, Ren M, et al. Complement inhibition targeted to injury specific neoepitopes attenuates atherogenesis in mice [J]. Front Cardiovasc Med, 2021, 8: 731315.
70
Xin Y, Hertle E, Van Der Kallen CJH, et al. C3 and alternative pathway components are associated with an adverse lipoprotein subclass profile: The CODAM study [J]. J Clin Lipidol, 2021, 15(2): 311-319.
71
Garcia-Arguinzonis M, Diaz-Riera E, Peña E, et al. Alternative C3 complement system: lipids and atherosclerosis [J]. Int J Mol Sci, 2021, 22(10): 5122.
72
Alawieh AM, Langley EF, Feng W, et al. Complement-dependent synaptic uptake and cognitive decline after stroke and reperfusion therapy [J]. J Neurosci, 2020, 40(20): 4042-4058.
73
Bhatia K, Kindelin A, Nadeem M, et al. Complement C3a receptor (C3aR) mediates vascular dysfunction, hippocampal pathology, and cognitive impairment in a mouse model of VCID [J]. Transl Stroke Res, 2022, 13(5): 816-829.
74
Wang Y, Wang B, Liu Y, et al. Inhibition of PI3K/Akt/mTOR signaling by NDRG2 contributes to neuronal apoptosis and autophagy in ischemic stroke [J]. J Stroke Cerebrovasc Dis, 2023, 32(3): 106984.
75
Jiang T, Li Y, He S, et al. Reprogramming astrocytic NDRG2/NF-κB/C3 signaling restores the diabetes-associated cognitive dysfunction [J]. EBioMedicine, 2023, 93: 104653.
76
Cao W, Lin J, Xiang W, et al. Physical exercise-induced astrocytic neuroprotection and cognitive improvement through primary cilia and mitogen-activated protein kinases pathway in rats with chronic cerebral hypoperfusion [J]. Front Aging Neurosci, 2022, 14: 866336.
77
King A, Szekely B, Calapkulu E, et al. The increased densities, but different distributions, of both C3 and S100A10 immunopositive astrocyte-like cells in Alzheimer's disease brains suggest possible roles for both A1 and A2 astrocytes in the disease pathogenesis [J]. Brain Sci, 2020, 10(8): 503.
78
Arba F, Giannini A, Piccardi B, et al. Small vessel disease and biomarkers of endothelial dysfunction after ischaemic stroke [J]. Eur Stroke J, 2019, 4(2): 119-126.
79
Jin W, Zhao J, Yang E, et al. Neuronal STAT3/HIF-1α/PTRF axis-mediated bioenergetic disturbance exacerbates cerebral ischemia-reperfusion injury via PLA2G4A [J]. Theranostics, 2022, 12(7): 3196-3216.
80
Shu J, Fang XH, Li YJ, et al. Microglia-induced autophagic death of neurons via IL-6/STAT3/miR-30d signaling following hypoxia/ischemia [J]. Mol Biol Rep, 2022, 49(8): 7697-7707.
81
Pekna M, Pekny M. The complement system: a powerful modulator and effector of astrocyte function in the healthy and diseased central nervous system [J]. Cells, 2021, 10(7): 1812.
82
Pekna M, Siqin S, De Pablo Y, et al. Astrocyte responses to complement peptide C3a are highly context-dependent [J]. Neurochem Res, 2023, 48(4): 1233-1241.
83
Aswendt M, Wilhelmsson U, Wieters F, et al. Reactive astrocytes prevent maladaptive plasticity after ischemic stroke [J]. Prog Neurobiol, 2022, 209: 102199.
84
Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia [J]. Nature, 2017, 541(7638): 481-487.
85
Stokowska A, Aswendt M, Zucha D, et al. Complement C3a treatment accelerates recovery after stroke via modulation of astrocyte reactivity and cortical connectivity [J]. J Clin Invest, 2023, 133(10): e162253.
86
Zhang FF, Zhang L, Zhao L, et al. The circular RNA Rap1b promotes Hoxa5 transcription by recruiting Kat7 and leading to increased Fam3a expression, which inhibits neuronal apoptosis in acute ischemic stroke [J]. Neural Regen Res, 2023, 18(10): 2237-2245.
87
Gutierrez J, Turan TN, Hoh BL, et al. Intracranial atherosclerotic stenosis: risk factors, diagnosis, and treatment [J]. Lancet Neurol, 2022, 21(4): 355-368.
88
Zhou X, Chen X, Zhang L, et al. Mannose-binding lectin reduces oxidized low-density lipoprotein induced vascular endothelial cells injury by inhibiting LOX1-ox-LDL binding and modulating autophagy [J]. Biomedicines, 2023, 11(6): 1743.
89
Carbone F, Valente A, Perego C, et al. Ficolin-2 serum levels predict the occurrence of acute coronary syndrome in patients with severe carotid artery stenosis [J]. Pharmacol Res, 2021, 166: 105462.
90
Schoeps B, Frädrich J, Krüger A. Cut loose TIMP-1: an emerging cytokine in inflammation [J]. Trends Cell Biol, 2023, 33(5): 413-426.
91
Arjunan A, Sah DK, Woo M, et al. Identification of the molecular mechanism of insulin-like growth factor-1 (IGF-1): a promising therapeutic target for neurodegenerative diseases associated with metabolic syndrome [J]. Cell Biosci, 2023, 13(1): 16.
92
Casado ME, Collado-Pérez R, Frago LM, et al. Recent advances in the knowledge of the mechanisms of leptin physiology and actions in neurological and metabolic pathologies [J]. Int J Mol Sci, 2023, 24(2): 1422.
93
Sotler T, Šebeštjen M. PCSK9 as an atherothrombotic risk factor [J]. Int J Mol Sci, 2023, 24(3): 1966.
94
Barakzie A, Jansen AJG, Ten Cate H, et al. Coagulation biomarkers for ischemic stroke [J]. Res Pract Thromb Haemost, 2023, 7(4): 100160.
95
Eriksson O, Hultström M, Persson B, et al. Mannose-binding lectin is associated with thrombosis and coagulopathy in critically ill COVID-19 patients [J]. Thromb Haemost, 2020, 120(12): 1720-1724.
96
Durigutto P, Macor P, Pozzi N, et al. Complement activation and thrombin generation by MBL bound to β2-glycoprotein I [J]. J Immunol, 2020, 205(5): 1385-1392.
97
Ma YH, Leng XY, Dong Y, et al. Risk factors for intracranial atherosclerosis: a systematic review and meta-analysis [J]. Atherosclerosis, 2019, 281: 71-77.
98
El Khoudary SR, Chen X, Mcconnell D, et al. Associations of HDL subclasses and lipid content with complement proteins over the menopause transition: The SWAN HDL ancillary study: HDL and complement proteins in women [J]. J Clin Lipidol, 2022, 16(5): 649-657.
99
Sereti E, Stamatelopoulos KS, Zakopoulos NA, et al. Hypertension: An immune related disorder? [J]. Clin Immunol, 2020, 212: 108247.
100
Nguyen VA, Riddell N, Crewther SG, et al. Longitudinal stroke recovery associated with dysregulation of complement system-a proteomics pathway analysis [J]. Front Neurol, 2020, 11: 692.
101
Alawieh A, Langley EF, Tomlinson S. Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice [J]. Sci Transl Med, 2018, 10(441): eaao6459.
102
Surugiu R, Catalin B, Dumbrava D, et al. Intracortical administration of the complement C3 receptor antagonist trifluoroacetate modulates microglia reaction after brain injury [J]. Neural Plast, 2019, 2019: 1071036.
103
Alawieh A, Andersen M, Adkins DL, et al. Acute complement inhibition potentiates neurorehabilitation and enhances tPA-mediated neuroprotection [J]. J Neurosci, 2018, 38(29): 6527-6545.
104
Fandaros M, Joseph K, Kaplan AP, et al. gC1qR antibody can modulate endothelial cell permeability in angioedema [J]. Inflammation, 2022, 45(1): 116-128.
105
Delgardo M, Tang AJ, Tudor T, et al. Role of gC1qR as a modulator of endothelial cell permeability and contributor to post-stroke inflammation and edema formation [J]. Front Cell Neurosci, 2023, 17: 1123365.
106
Mercurio D, Piotti A, Valente A, et al. Plasma-derived and recombinant C1 esterase inhibitor: binding profiles and neuroprotective properties in brain ischemia/reperfusion injury [J]. Brain Behav Immun, 2021, 93: 299-311.
107
Shi Y, Jin Y, Li X, et al. C5aR1 Mediates the Progression of Inflammatory Responses in the Brain of Rats in the Early Stage after Ischemia and Reperfusion [J]. ACS Chem Neurosci, 2021, 12(21): 3994-4006.
108
Kumar P, Hair P, Cunnion K, et al. Classical complement pathway inhibition reduces brain damage in a hypoxic ischemic encephalopathy animal model [J]. PLoS One, 2021, 16(9): e0257960.
109
Wiesmann C, Katschke KJ, Yin J, et al. Structure of C3b in complex with CRIg gives insights into regulation of complement activation [J]. Nature, 2006, 444(7116): 217-220.
110
石艳超, 韩晋, 李强, 等. 补体C5a受体1拮抗剂对小鼠脑缺血/再灌注的保护作用 [J]. 中风与神经疾病杂志, 2022, 39(12): 1082-1085.
111
Grannonico M, Brandolini L, Varrassi G, et al. DF3016A induces increased BDNF transcription in ischemic neuroinflammation injury [J]. Brain Res, 2020, 1748: 147057.
112
Shah TA, Pallera HK, Kaszowski CL, et al. Therapeutic hypothermia inhibits the classical complement pathway in a rat model of neonatal hypoxic-ischemic encephalopathy [J]. Front Neurosci, 2021, 15: 616734.
113
Wang Y, Su Y, Lai W, et al. Salidroside restores an anti-inflammatory endothelial phenotype by selectively inhibiting endothelial complement after oxidative stress [J]. Inflammation, 2020, 43(1): 310-325.
114
Brandolini L, Grannonico M, Bianchini G, et al. The novel C5aR antagonist DF3016A protects neurons against ischemic neuroinflammatory injury [J]. Neurotox Res, 2019, 36(1): 163-174.
115
Liu Y, Wu C, Hou Z, et al. Pseudoginsenoside-F11 accelerates microglial phagocytosis of myelin debris and attenuates cerebral ischemic injury through complement receptor 3 [J]. Neuroscience, 2020, 426: 33-49.
116
Ma Y, Liu Z, Jiang L, et al. Endothelial progenitor cell transplantation attenuates synaptic loss associated with enhancing complement receptor 3-dependent microglial/macrophage phagocytosis in ischemic mice [J]. J Cereb Blood Flow Metab, 2023, 43(3): 379-392.
117
Song S, Guo L, Wu D, et al. Quantitative proteomic analysis of plasma after remote ischemic conditioning in a rhesus monkey ischemic stroke model [J]. Biomolecules, 2021, 11(8): 1164.
118
Ma Y, Jiang L, Wang L, et al. Endothelial progenitor cell transplantation alleviated ischemic brain injury via inhibiting C3/C3aR pathway in mice [J]. J Cereb Blood Flow Metab, 2020, 40(12): 2374-2386.
119
Ames RS, Lee D, Foley JJ, et al. Identification of a selective nonpeptide antagonist of the anaphylatoxin C3a receptor that demonstrates antiinflammatory activity in animal models [J]. J Immunol, 2001, 166(10): 6341-6348.
120
Li XX, Kumar V, Clark RJ, et al. The "C3aR Antagonist" SB290157 is a partial C5aR2 agonist [J]. Front Pharmacol, 2020, 11: 591398.
121
Lyu Q, Pang X, Zhang Z, et al. Microglial V-set and immunoglobulin domain-containing 4 protects against ischemic stroke in mice by suppressing TLR4-regulated inflammatory response [J]. Biochem Biophys Res Commun, 2020, 522(3): 560-567.
[1] 马晓菊, 梁潇, 段云友, 袁丽君, 赵萍. NBAV脂质纳泡对ApoE -/-小鼠动脉粥样硬化病变的评估和干预[J]. 中华医学超声杂志(电子版), 2024, 21(06): 608-616.
[2] 曹琨芃, 王昕玥, 吴柳希, 邓红艳, 李璐, 徐超丽, 叶新华. 淋巴瘤患者超声引导下颈内静脉置管术后静脉血栓形成的危险因素评估[J]. 中华医学超声杂志(电子版), 2024, 21(03): 310-318.
[3] 王啸, 李一凡, 沈素红, 曹国瑞, 史小涛, 袁彦浩, 谭红略. 全膝关节置换术后早期下肢深静脉血栓形成的时空规律[J]. 中华关节外科杂志(电子版), 2024, 18(03): 414-420.
[4] 石豆豆, 王新星, 王向阳, 刘震洋, 曾淑娟, 仝海波. 急性前循环大血管闭塞机械取栓的研究进展[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 112-116.
[5] 陶栎, 张月辉, 王相明. 急性缺血性卒中院前急救体系的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(01): 56-60.
[6] 汤峥丽, 王芳, 王唯坚. 中老年人群幽门螺杆菌感染对非酒精性脂肪肝及冠状动脉粥样硬化影响的关联性分析[J]. 中华消化病与影像杂志(电子版), 2024, 14(02): 137-140.
[7] 温绍敏, 王雅晳, 施依璐, 段莎莎, 云书荣, 张小杉. 靶向超声造影技术在动脉粥样硬化治疗中的应用进展[J]. 中华临床医师杂志(电子版), 2024, 18(05): 496-499.
[8] 麻凌峰, 张小杉, 施依璐, 段莎莎, 魏颖, 夏士林, 张敏洁, 王雅皙. 纳米泡载药靶向治疗动脉粥样硬化的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(02): 214-218.
[9] 田春蕾, 李瑞雨, 肖凌勇, 刘艺, 王晓璇, 戴晓矞. 针刺治疗缺血性卒中后肢体功能障碍的神经影像研究概况[J]. 中华针灸电子杂志, 2024, 13(02): 78-82.
[10] 王勇, 王丽. 导管接触性溶栓治疗下肢深静脉血栓安全性和有效性的系统评价再评价[J]. 中华介入放射学电子杂志, 2024, 12(01): 58-63.
[11] 葛静萍, 尹媛媛, 李燕. 梯度压力袜联合间歇充气加压在老年新型冠状病毒肺炎患者预防下肢深静脉血栓形成中的应用[J]. 中华介入放射学电子杂志, 2024, 12(01): 70-74.
[12] 王林源, 熊鑫, 杨坤, 邓勇志. 基于冠状动脉CT血管成像的影像组学列线图鉴别诊断易损斑块的价值[J]. 中华诊断学电子杂志, 2024, 12(01): 1-8.
[13] 肖韩艳, 王子杰, 王岳, 李岩. 槲皮素通过抑制小鼠骨髓来源泡沫细胞焦亡抗动脉粥样硬化的研究[J]. 中华卫生应急电子杂志, 2024, 10(01): 26-32.
[14] 董坤, 陈海恋, 王景. 血清CircRNA_0003694与老年急性缺血性卒中患者卒中后认知损害的关系[J]. 中华脑血管病杂志(电子版), 2024, 18(03): 230-235.
[15] 梁文雯, 李征, 万敏, 骆佳莹, 贾伟华. 急性缺血性卒中再灌注治疗后出血转化的研究进展[J]. 中华脑血管病杂志(电子版), 2024, 18(01): 71-80.
阅读次数
全文


摘要