1 |
Walker L, Simpson H, Thomas AJ, et al. Prevalence, distribution, and severity of cerebral amyloid angiopathy differ between Lewy body diseases and Alzheimer's disease [J]. Acta Neuropathol Commun, 2024, 12(1): 28.
|
2 |
Saito S, Ihara M. New therapeutic approaches for alzheimer's disease and cerebral amyloid angiopathy [J]. Front Aging Neurosci, 2014, 6: 290.
|
3 |
吴娟娟, 倪俊. 脑淀粉样血管病发病机制的研究进展 [J]. 中国卒中杂志, 2021, 16(12): 1278-1283.
|
4 |
Gireud-Goss M, Mack AF, McCullough LD, et al. Cerebral amyloid angiopathy and blood-brain barrier dysfunction [J]. Neuroscientist, 2021, 27(6): 668-684.
|
5 |
Egan MF, Kost J, Voss T, et al. Randomized trial of verubecestat for prodromal Alzheimer's disease [J]. New Engl J Med, 2019, 380(15): 1408-1420.
|
6 |
Novak G, Streffer JR, Timmers M, et al. Long-term safety and tolerability of atabecestat (JNJ-54861911), an oral BACE1 inhibitor, in early Alzheimer's disease spectrum patients: a randomized, double-blind, placebo-controlled study and a two-period extension study [J]. Alzheimers Res Ther, 2020, 12(1): 58.
|
7 |
Wessels AM, Lines C, Stern RA, et al. Cognitive outcomes in trials of two BACE inhibitors in Alzheimer's disease [J]. Alzheimers Dement, 2020, 16(11): 1483-1492.
|
8 |
Lo AC, Evans CD, Mancini M, et al. Phase Ⅱ (NAVIGATE-AD study) results of LY3202626 effects on patients with mild Alzheimer's disease dementia [J]. J Alzheimers Dis Rep, 2021, 5(1): 321-336.
|
9 |
Schelle J, Wegenast-Braun BM, Fritschi SK, et al. Early Aβ reduction prevents progression of cerebral amyloid angiopathy [J]. Ann Neurol, 2019, 86(4): 561-571.
|
10 |
Mori T, Rezai-Zadeh K, Koyama N, et al. Tannic acid is a natural β-secretase inhibitor that prevents cognitive impairment and mitigates Alzheimer-like pathology in transgenic mice [J]. J Biol Chem, 2012, 287(9): 6912-6927.
|
11 |
Doody RS, Raman R, Farlow M, et al. A phase 3 trial of semagacestat for treatment of Alzheimer's disease [J]. New Engl J Med, 2013, 369(4): 341-350.
|
12 |
Coric V, Salloway S, van Dyck CH, et al. Targeting prodromal Alzheimer disease with avagacestat: a randomized clinical trial [J]. JAMA Neurol, 2015, 72(11): 1324-1333.
|
13 |
Green RC, Schneider LS, Amato DA, et al. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild alzheimer disease: a randomized controlled trial [J]. JAMA, 2009, 302(23): 2557-2564.
|
14 |
Salloway S, Sperling R, Keren R, et al. A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease [J]. Neurology, 2011, 77(13): 1253-1262.
|
15 |
Panza F, Lozupone M, Seripa D, et al. Amyloid-β immunotherapy for Alzheimer disease: is it now a long shot? [J]. Ann Neurol, 2019, 85(3): 303-315.
|
16 |
Zhou G, Xiang T, Xu Y, et al. Fruquintinib/ HMPL-013 ameliorates cognitive impairments and pathology in a mouse model of cerebral amyloid angiopathy (CAA) [J]. Eur J Pharmacol, 2023, 939: 175446.
|
17 |
Koudriavtseva T, Lorenzano S, Anelli V, et al. Case report: probable cerebral amyloid angiopathy-related inflammation during bevacizumab treatment for metastatic cervical cancer [J]. Front Oncol, 2021, 11: 669753.
|
18 |
Daoutsali E, Hailu TT, Buijsen RAM, et al. Antisense oligonucleotide-induced amyloid precursor protein splicing modulation as a therapeutic approach for Dutch-type cerebral amyloid angiopathy [J]. Nucleic Acid Ther, 2021, 31(5): 351-363.
|
19 |
Orgogozo JM, Gilman S, Dartigues JF, et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization [J]. Neurology, 2003, 61(1): 46-54.
|
20 |
Yadollahikhales G, Rojas JC. Anti-amyloid immunotherapies for Alzheimer's disease: a 2023 clinical update [J]. Neurotherapeutics, 2023, 20(4): 914-931.
|
21 |
Nicoll JAR, Buckland GR, Harrison CH, et al. Persistent neuropathological effects 14 years following amyloid-β immunization in Alzheimer's disease [J]. Brain, 2019, 142(7): 2113-2126.
|
22 |
Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, et al. Cerebral amyloid angiopathy and Alzheimer disease-one peptide, two pathways [J]. Nat Rev Neurol, 2020, 16(1): 30-42.
|
23 |
Sperling RA, Jack CRJr, Black SE, et al. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer's Association Research Roundtable Workgroup [J]. Alzheimers Dement, 2011, 7(4): 367-385.
|
24 |
Wisniewski T. AD vaccines: conclusions and future directions [J]. CNS Neurol Disord Drug Targets, 2009, 8(2): 160-166.
|
25 |
Wilcock DM, Jantzen PT, Li Q, et al. Amyloid-beta vaccination, but not nitro-nonsteroidal anti-inflammatory drug treatment, increases vascular amyloid and microhemorrhage while both reduce parenchymal amyloid [J]. Neuroscience, 2007, 144(3): 950-960.
|
26 |
Tanaka M, Saito S, Inoue T, et al. Potential therapeutic approaches for cerebral amyloid angiopathy and Alzheimer's disease [J]. Int J Mol Sci, 2020, 21(6): 1992.
|
27 |
Bales KR, O'Neill SM, Pozdnyakov N, et al. Passive immunotherapy targeting amyloid-β reduces cerebral amyloid angiopathy and improves vascular reactivity [J]. Brain, 2016, 139(Pt 2): 563-577.
|
28 |
Leurent C, Goodman JA, Zhang Y, et al. Immunotherapy with ponezumab for probable cerebral amyloid angiopathy [J]. Ann Clin Transl Neurol, 2019, 6(4): 795-806.
|
29 |
Sims JR, Zimmer JA, Evans CD, et al. Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER-ALZ 2 randomized clinical trial [J]. Jama, 2023, 330(6): 512-527.
|
30 |
Greenberg SM, Cordonnier C, Schneider JA, et al. Off-label use of aducanumab for cerebral amyloid angiopathy [J]. Lancet Neurol, 2021, 20(8): 596-597.
|
31 |
Sveikata L, Charidimou A, Viswanathan A. Vessels sing their ARIAs: the role of vascular amyloid in the age of aducanumab [J]. Stroke, 2022, 53(1): 298-302.
|
32 |
Xiong M, Jiang H, Serrano JR, et al. APOE immunotherapy reduces cerebral amyloid angiopathy and amyloid plaques while improving cerebrovascular function [J]. Sci Transl Med, 2021, 13(581): eabd7522.
|
33 |
Greenberg SM, Rosand J, Schneider AT, et al. A phase 2 study of tramiprosate for cerebral amyloid angiopathy [J]. Alzheimer Dis Assoc Disord, 2006, 20(4): 269-274.
|
34 |
Qi XM, Ma JF. The role of amyloid beta clearance in cerebral amyloid angiopathy: more potential therapeutic targets [J]. Transl Neurodegener, 2017, 6: 22.
|
35 |
Cozza M, Amadori L, Boccardi V. Exploring cerebral amyloid angiopathy: insights into pathogenesis, diagnosis, and treatment [J]. J Neurol Sci, 2023, 454: 120866.
|
36 |
Carpentier M, Robitaille Y, DesGroseillers L, et al. Declining expression of neprilysin in Alzheimer disease vasculature: possible involvement in cerebral amyloid angiopathy [J]. J Neuropathol Exp Neurol, 2002, 61(10): 849-856.
|
37 |
Farris W, Schütz SG, Cirrito JR, et al. Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy [J]. Am J Pathol, 2007, 171(1): 241-251.
|
38 |
Burrell M, Henderson SJ, Ravnefjord A, et al. Neprilysin inhibits coagulation through proteolytic inactivation of fibrinogen [J]. PLoS One, 2016, 11(7): e0158114.
|
39 |
Miners JS, Kehoe P, Love S. Neprilysin protects against cerebral amyloid angiopathy and Aβ-induced degeneration of cerebrovascular smooth muscle cells [J]. Brain Pathol, 2011, 21(5): 594-605.
|
40 |
Marr RA, Hafez DM. Amyloid-beta and Alzheimer's disease: the role of neprilysin-2 in amyloid-beta clearance [J]. Front Aging Neurosci, 2014, 6: 187.
|
41 |
Inoue Y, Ueda M, Masuda T, et al. Memantine, a noncompetitive N-methyl-D-aspartate receptor antagonist, attenuates cerebral amyloid angiopathy by increasing insulin-degrading enzyme expression [J]. Mol Neurobiol, 2019, 56(12): 8573-8588.
|
42 |
Inoue Y, Masuda T, Misumi Y, et al. Metformin attenuates vascular pathology by increasing expression of insulin-degrading enzyme in a mixed model of cerebral amyloid angiopathy and type 2 diabetes mellitus [J]. Neurosci Lett, 2021, 762: 136136.
|
43 |
Nizari S, Wells JA, Carare RO, et al. Loss of cholinergic innervation differentially affects eNOS-mediated blood flow, drainage of Aβ and cerebral amyloid angiopathy in the cortex and hippocampus of adult mice [J]. Acta Neuropathol Commun, 2021, 9(1): 12.
|
44 |
Begum N, Shen W, Manganiello V. Role of PDE3A in regulation of cell cycle progression in mouse vascular smooth muscle cells and oocytes: Implications in cardiovascular diseases and infertility [J]. Curr Opin Pharm, 2011, 11(6): 725-729.
|
45 |
Yakushiji Y, Kawamoto K, Uchihashi K, et al. Low-dose phosphodiesterase Ⅲ inhibitor reduces the vascular amyloid burden in amyloid-β protein precursor transgenic mice [J]. Int J Mol Sci, 2020, 21(7): 2295.
|
46 |
Huang Y, Cheng Y, Wu J, et al. Cilostazol as an alternative to aspirin after ischaemic stroke: a randomised, double-blind, pilot study [J]. Lancet Neurol, 2008, 7(6): 494-499.
|
47 |
Gotoh F, Tohgi H, Hirai S, et al. Cilostazol stroke prevention study: a placebo-controlled double-blind trial for secondary prevention of cerebral infarction [J]. J Stroke Cerebrovasc Dis, 2000, 9(4): 147-157.
|
48 |
Polis B, Gurevich V, Assa M, et al. Norvaline restores the BBB integrity in a mouse model of Alzheimer's disease [J]. Int J Mol Sci, 2019, 20(18): 4616.
|
49 |
Garcia-Alloza M, Prada C, Lattarulo C, et al. Matrix metalloproteinase inhibition reduces oxidative stress associated with cerebral amyloid angiopathy in vivo in transgenic mice [J]. J Neurochem, 2009, 109(6): 1636-1647.
|
50 |
Zhang YL, Wang J, Zhang ZN, et al. The relationship between amyloid-beta and brain capillary endothelial cells in Alzheimer's disease [J]. Neural Regen Res, 2022, 17(11): 2355-2363.
|
51 |
De Silva TM, Miller AA. Cerebral small vessel disease: targeting oxidative stress as a novel therapeutic strategy? [J]. Front Pharmacol, 2016, 7: 61.
|
52 |
Hamel E, Nicolakakis N, Aboulkassim T, et al. Oxidative stress and cerebrovascular dysfunction in mouse models of Alzheimer's disease [J]. Exp Physiol, 2008, 93(1): 116-120.
|
53 |
Saito S, Tanaka M, Satoh-Asahara N, et al. Taxifolin: a potential therapeutic agent for cerebral amyloid angiopathy [J]. Front Pharmacol, 2021, 12: 643357.
|
54 |
Tanaka M, Saito S, Inoue T, et al. Novel therapeutic potentials of taxifolin for amyloid-β-associated neurodegenerative diseases and other diseases: recent advances and future perspectives [J]. Int J Mol Sci, 2019, 20(9): 2139.
|
55 |
Inoue T, Saito S, Tanaka M, et al. Pleiotropic neuroprotective effects of taxifolin in cerebral amyloid angiopathy [J]. Proc Natl Acad Sci U S A, 2019, 116(20): 10031-10038.
|
56 |
Saito S, Yamamoto Y, Maki T, et al. Taxifolin inhibits amyloid-β oligomer formation and fully restores vascular integrity and memory in cerebral amyloid angiopathy [J]. J Neurol Sci, 2017, 381: 988.
|
57 |
Yan P, Zhu A, Liao F, et al. Minocycline reduces spontaneous hemorrhage in mouse models of cerebral amyloid angiopathy [J]. Stroke, 2015, 46(6): 1633-1640.
|
58 |
Fan R, Xu F, Previti ML, et al. Minocycline reduces microglial activation and improves behavioral deficits in a transgenic model of cerebral microvascular amyloid [J]. J Neurosci, 2007, 27(12): 3057-3063.
|
59 |
Bax F, Warren A, Fouks AA, et al. Minocycline in severe cerebral amyloid angiopathy: a single-center cohort study [J]. J Am Heart Assoc, 2024, 13(4): e033464.
|
60 |
Voigt S, Koemans EA, Rasing I, et al. Minocycline for sporadic and hereditary cerebral amyloid angiopathy (batman): study protocol for a placebo-controlled randomized double-blind trial [J]. Trials, 2023, 24(1): 378.
|
61 |
Zhou G, Ye Q, Xu Y, et al. Mitochondrial calcium uptake 3 mitigates cerebral amyloid angiopathy-related neuronal death and glial inflammation by reducing mitochondrial dysfunction [J]. Int Immunopharmacol, 2023, 117: 109614.
|
62 |
Ambi A, Stanisavljevic A, Victor TW, et al. Evaluation of copper chelation therapy in a transgenic rat model of cerebral amyloid angiopathy [J]. ACS Chem Neurosci, 2023, 14(3): 378-388.
|
63 |
Zhu X, Victor TW, Ambi A, et al. Copper accumulation and the effect of chelation treatment on cerebral amyloid angiopathy compared to parenchymal amyloid plaques [J]. Metallomics, 2020, 12(4): 539-546.
|
64 |
Han BH, Zhou ML, Johnson AW, et al. Contribution of reactive oxygen species to cerebral amyloid angiopathy, vasomotor dysfunction, and microhemorrhage in aged Tg2576 mice [J]. Proc Natl Acad Sci U S A, 2015, 112(8): E881-890.
|
65 |
Hur J, Mateo V, Amalric N, et al. Cerebrovascular β-amyloid deposition and associated microhemorrhages in a Tg2576 alzheimer mouse model are reduced with a DHA-enriched diet [J]. FASEB J, 2018, 32(9): 4972-4983.
|
66 |
Hu M, Li T, Ma X, et al. Macrophage lineage cells-derived migrasomes activate complement-dependent blood-brain barrier damage in cerebral amyloid angiopathy mouse model [J]. Nat Commun, 2023, 14(1): 3945.
|
67 |
Ioannou M, Fella E, Papacharalambous R, et al. Treatment of the CRND8 mouse model for cerebral amyloid angiopathy, exhibited increased levels of neuron specific enolase in brain tissue following long-term treatment with a modified C5a receptor agonist, accompanied by improved cognitive function [J]. Biochem Biophys Res Commun, 2023, 675: 78-84.
|
68 |
Boese AC, Hamblin MH, Lee JP. Neural stem cell therapy for neurovascular injury in Alzheimer's disease [J]. Exp Neurol, 2020, 324: 113112.
|
69 |
Nikolic WV, Hou H, Town T, et al. Peripherally administered human umbilical cord blood cells reduce parenchymal and vascular beta-amyloid deposits in Alzheimer mice [J]. Stem Cells Dev, 2008, 17(3): 423-439.
|
70 |
Harach T, Jammes F, Muller C, et al. Administrations of human adult ischemia-tolerant mesenchymal stem cells and factors reduce amyloid beta pathology in a mouse model of Alzheimer's disease [J]. Neurobiol Aging, 2017, 51: 83-96.
|
71 |
Chakraborty A, Kamermans A, van Het Hof B, et al. Angiopoietin like-4 as a novel vascular mediator in capillary cerebral amyloid angiopathy [J]. Brain, 2018, 141(12): 3377-3388.
|
72 |
March ME, Gutierrez-Uzquiza A, Snorradottir AO, et al. NAC blocks cystatin C amyloid complex aggregation in a cell system and in skin of HCCAA patients [J]. Nat Commun, 2021, 12(1): 1827.
|
73 |
Li N, Zhang X, Gu Z, et al. Young plasma attenuates cognitive impairment and the cortical hemorrhage area in cerebral amyloid angiopathy model mice [J]. Ann Transl Med, 2021, 9(2): 147.
|
74 |
Qi XM, Wang C, Chu XK, et al. Intraventricular infusion of clusterin ameliorated cognition and pathology in Tg6799 model of Alzheimer's disease [J]. BMC Neurosci, 2018, 19(1): 2.
|
75 |
Yang J, Kou J, Lalonde R, et al. Intracranial IL-17A overexpression decreases cerebral amyloid angiopathy by upregulation of ABCA1 in an animal model of Alzheimer's disease [J]. Brain Behav Immun, 2017, 65: 262-273.
|
76 |
Wilhelmus MM, de Jager M, Drukarch B. Tissue transglutaminase: a novel therapeutic target in cerebral amyloid angiopathy [J]. Neurodegener Dis, 2012, 10(1-4): 317-319.
|
77 |
Lifshitz V, Weiss R, Benromano T, et al. Immunotherapy of cerebrovascular amyloidosis in a transgenic mouse model [J]. Neurobiol Aging, 2012, 33(2): 432.e431-432.e413.
|
78 |
Lewis TL, Cao D, Lu H, et al. Overexpression of human apolipoprotein A-I preserves cognitive function and attenuates neuroinflammation and cerebral amyloid angiopathy in a mouse model of Alzheimer disease [J]. J Biol Chem, 2010, 285(47): 36958-36968.
|
79 |
Saviano A, Casillo GM, Raucci F, et al. Supplementation with ribonucleotide-based ingredient (Ribodiet®) lessens oxidative stress, brain inflammation, and amyloid pathology in a murine model of Alzheimer [J]. Biomed Pharmacother, 2021, 139: 111579.
|
80 |
Thakker DR, Weatherspoon MR, Harrison J, et al. Intracerebroventricular amyloid-beta antibodies reduce cerebral amyloid angiopathy and associated micro-hemorrhages in aged Tg2576 mice [J]. Proc Natl Acad Sci U S A, 2009, 106(11): 4501-4506.
|
81 |
Mehla J, Singh I, Diwan D, et al. STAT3 inhibitor mitigates cerebral amyloid angiopathy and parenchymal amyloid plaques while improving cognitive functions and brain networks [J]. Acta Neuropathol Commun, 2021, 9(1): 193.
|
82 |
Gregory JL, Prada CM, Fine SJ, et al. Reducing available soluble β-amyloid prevents progression of cerebral amyloid angiopathy in transgenic mice [J]. J Neuropathol Exp Neurol, 2012, 71(11): 1009-1017.
|